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These are some rough notes from a study group at the Max Planck Insti-
tute in Bonn, autumn 2024. The topic discussed is rigid meromorphic
cocycles for orthogonal groups, closely following the paper [DGL23].
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1 Background: rigid meromorphic cocycles for SL2

2 Lecture 2: Orthogonal groups and symmetric spaces
Let 𝑉/ℚ be a vector space with a non-degenerate symmetric bilinear form

⟨⋅, ⋅⟩ : 𝑉 × 𝑉 → ℚ. (2.1)

Then 𝑞(𝑣) ≔ 1
2 ⟨𝑣, 𝑣⟩ is a quadratic form. We define the corresponding orthogonal groups
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𝑂𝑉 ≔ {𝑔 ∈ GL(𝑉) : 𝑞(𝑔𝑣) = 𝑞(𝑣)} and SO𝑉 ≔ 𝑂𝑉 ∩ SL(𝑉). (2.2)

We may diagonalize the form 𝑞 over ℝ, and we say 𝑉 has (real) signature (𝑟, 𝑠) if 𝑞 is equivalent
to

∑
𝑟

𝑗=1
𝑥2

𝑗 − ∑
𝑠

𝑗=1
𝑥2

𝑟+𝑗 (2.3)

over ℝ. We let 𝑛 = 𝑟 + 𝑠 denote the dimension of 𝑉.

2.1 Archimedean symmetric spaces

Definition 2.1 :  The archimedean symmetric space of 𝑋∞ is the set of maximal negative
definite subspaces of 𝑉ℝ ≔ 𝑉 ⊗ ℝ.

One can prove that the dimension of 𝑋∞ is 𝑟 ⋅ 𝑠.

Lemma 2.2 :  The group 𝑂𝑉(ℝ) acts transitively on 𝑋∞.

Proof :  Let 𝑧 and 𝑧′ be elements of 𝑋∞, and view them as subspaces of 𝑉ℝ with the induced
quadratic form. Since quadratic spaces over ℝ are determined by their signature up to
isometry, and both have signature (0, 𝑠), there exists an isometry 𝑧 → 𝑧′. By Witt’s extension
theorem this extends to an isometry 𝑉ℝ → 𝑉ℝ. □

Fix a point 𝑧0 ∈ 𝑋∞. The lemma implies that we may identify 𝑋∞ with 𝑂𝑉(ℝ)/ Stab𝑂𝑉(ℝ) 𝑧0.

Example 2.3 :
• Suppose 𝑉 has signature (𝑟, 0). Then 𝑋∞ is simply a point.
• Suppose 𝑉 has signature (𝑟, 1). Over ℝ, 𝑞 is equivalent to 𝑞ℝ(𝑥) ≔ 𝑥2

1 + … + 𝑥2
𝑟 − 𝑥2

𝑟+1. If
𝑞ℝ(𝑥) < 0, then 𝑥2

1 + … + 𝑥2
𝑟 < 𝑥2

𝑟+1. Since we are interested in the line spanned by 𝑥, we may
rescale so that 𝑥𝑟+1 = 1. Then the line corresponds to a unique point (𝑥1, …, 𝑥𝑟) ∈ ℝ𝑟 with

𝑥2
1 + … + 𝑥2

𝑟 < 1. (2.1)

This implies that 𝑋∞ can be identified with the unit ball in ℝ𝑟. Note that the topology is not
the subspace topology, but rather the hyperbolic topology.

Example 2.4 :  Let 𝑉 be of signature (𝑟, 2). For any field 𝐾/ℚ, we define the quadric of
isotropic lines over 𝐾 to be

𝒬(𝐾) ≔ {𝑣 ∈ 𝑉𝐾 − {0} : 𝑞𝐾(𝑣) = 0}/𝐾×. (2.2)
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This is a closed subvariety of ℙ1(𝑉). We now define

�̃�∞ ≔ {[𝑣] ∈ 𝒬(ℂ) : ⟨𝑣, 𝑣⟩ < 0}, (2.3)

which is an open subset of 𝒬(ℂ). The involution 𝑥 ↦ 𝑥 exchanges the two connected components
of �̃�∞. Given a line [𝑣] ∈ �̃�∞, write 𝑣 = 𝑣1 + 𝑖𝑣2. Then one can check that 𝑞ℝ(𝑣1) = 𝑞ℝ(𝑣2) = 0,
so ℝ𝑣1 + ℝ𝑣2 ∈ 𝑋∞. This gives a 2-to-1 cover �̃�∞ → 𝑋∞. In particular, this gives 𝑋∞ the struc-
ture of a complex manifold. This is specific to the signature (𝑟, 2) setting; in general signature
there is no complex structure on 𝑋∞.

We can also define

�̃�′
∞ ≔ {[𝑣] ∈ 𝒬(ℂ) : ⟨𝑣, 𝑤⟩ ≠ 0 for all [𝑤] ∈ 𝒬(ℝ)}. (2.4)

This natural contains �̃�∞.

Exercise 2.5 :  Show that �̃�′
∞ = �̃�∞ unless 𝑟 = 2.

2.2 𝑝-adic symmetric spaces

In this section we will assume 𝑛 ≥ 3, and fix 𝑝 ≥ 3. We define ℂ𝑝 to be the completion of a
fixed algebraic closure ℚ𝑝.

Suppose 𝑉ℚ𝑝
 contains a self-dual ℤ𝑝-lattice Λ. Then 𝑞 induces a non-degenerate 𝔽𝑝-valued

pairing on Λ/𝑝Λ. By the Chevalley–Warning theorem, this form has a zero, which lifts to
an isotropic vector in Λ by Hensel’s lemma. It follows that 𝒬(ℚ𝑝) is non-empty. Inspired by
the definition of �̃�′

∞, we have the following:

Definition 2.6 :  The 𝑝-adic symmetric space of 𝑂𝑉 is

𝑋𝑝 ≔ {[𝑣] ∈ 𝒬(ℂ𝑝) : ⟨𝑣, 𝑤⟩ ≠ 0 for all 𝑤 ∈ 𝒬(ℚ𝑝)}. (2.1)

Proposition 2.7 :  The space 𝑋𝑝 carries the structure of a rigid analytic variety.

Proof :  For any line [𝑤] ∈ 𝒬(ℚ𝑝), we may find 𝑤′ ∈ Λ′ ≔ Λ − 𝑝Λ such that [𝑤] = [𝑤′].
Similarly, [𝑣] ∈ 𝒬(ℂ𝑝), let 𝑣′ be a corresponding vector in Λℂ𝑝

− 𝔪ℂ𝑝
Λℂ𝑝

. We extend the
valuation on ℚ𝑝 to ℂ𝑝, and so for 𝑘 ∈ ℕ the set

𝑋≤𝑘
𝑝,Λ ≔ {𝑣 ∈ 𝒬(ℂ𝑝) : ord𝑝⟨𝑣′, 𝑤′⟩ ≤ 𝑘 for all [𝑤] ∈ 𝒬(ℚ𝑝)} (2.2)

is well-defined. Then 𝑋𝑝 = ⋃𝑘 𝑋≤𝑘
𝑝,Λ, and one can show that 𝑋≤𝑘

𝑝  is an affinoid open. □
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Note that while the choice of basic affinoids depends on Λ, the space 𝑋𝑝 itself is independent.

Example 2.8 :  Suppose 𝑉 has real signature (1, 2). We claim that

𝑋𝑝 ≅ 𝔥𝑝 = ℙ1(ℂ𝑝) − ℙ1(ℚ𝑝). (2.3)

3 Lecture 3: Special cycles
In this lecture, the goal is to construct certain divisors on 𝑋∞ and 𝑋𝑝. We start with 𝑋∞.

3.1 Archimedean divisors

Definition 3.1 :  Fix 𝑣 ∈ 𝑉ℝ with 𝑞(𝑣) > 0, and define

Δ𝑣,∞ ≔ {𝑧 ∈ 𝑋∞ : 𝑧 ⊂ 𝑣⟂}, (3.1)

where 𝑣⟂ is the orthogonal complement of the span of 𝑣 in 𝑉.

This can be identified with the symmetric space of the orthogonal group of 𝑣⟂ ⊂ 𝑉ℝ.

Remark 3.2 :
(i) Define 𝒯 ≔ {(𝑤, 𝑧) ∈ 𝑉ℝ × 𝑋∞ : 𝑤 ∈ 𝑧}. This is naturally a vector bundle over 𝑋∞ via

projection onto the second factor. Taking pr𝑧 : 𝑉 → 𝑧 to be the orthogonal projection, we
obtain a section 𝑠𝑣 : 𝑋∞ → 𝒯 given by 𝑧 ↦ (pr𝑧(𝑣), 𝑧). Then Δ𝑣,∞ is the preimage of the 0
-section (0, 𝑧) under 𝑣.

(ii) The action of 𝐺(ℝ) lifts to 𝒯, and using this it is easy to verify that 𝑔 ⋅ Δ𝑣,∞ = Δ𝑔𝑣,∞.

3.2 𝑝-adic divisors

We now turn to the divisors on 𝑋𝑝.

Definition 3.3 :  Let 𝑣 ∈ 𝑉ℚ𝑝
 be a vector with 𝑞(𝑣) ≠ 0, i.e. 𝑣 is anisotropic. By analogy with

the archimedean setting, we define

Δ𝑣,𝑝 ≔ {𝜉 ∈ 𝑋𝑝 : 𝜉 ⊂ 𝑣⟂}, (3.1)

called a special divisor on 𝑋𝑝.

Then for any 𝑔 ∈ 𝐺(ℚ𝑝) we have 𝑔 ⋅ Δ𝑣,𝑝 = Δ𝑔𝑣,𝑝. Recall that a hyperbolic plane is a 2-dimen-
sional quadratic space with quadratic form 𝑞(𝑥, 𝑦) = 𝑥 ⋅ 𝑦. A hyperbolic space ℍ is a direct
sum of hyperbolic planes.
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Example 3.4 :  Suppose 𝑉ℚ𝑝
≅ ℚ𝑝𝑣 ⋅ ℍ. Then Δ𝑣,𝑝 is trivial. More generally, if 𝑉 is a

quadratic space with

𝑞(𝑥) = 𝑥2
1 + 𝑥2

2 + 𝑥2
3 , (3.2)

then Δ𝑣,𝑝 is trivial if and only if 𝑞(𝑣) is a square in ℚ×
𝑝.

Recall that we fixed a self-dual lattice Λ in 𝑉ℚ𝑝
. To understand the intersections of Δ𝑣,𝑝 with

the basic affinoids 𝑋≤𝑘
𝑝,Λ, we first relate 𝑣 and Λ.

Definition 3.5 :  Let 𝑣 ∈ 𝑉ℚ𝑝
. Then we define the order of 𝑣 with respect to Λ to be

ordΛ(𝑣) ≔ sup{ℓ ∈ ℤ : 𝑣
𝑝ℓ ∈ Λ} ∈ ℤ ∪ {∞}. (3.3)

We also define the isotropy level

isoΛ(𝑣) ≔ ord𝑝(𝑞(𝑣)) − 2 ordΛ(𝑣). (3.4)

In other words, isoΛ(𝑣) = ord𝑝(𝑞(𝑣0)) if 𝑣 = 𝑝ℓ𝑣0 with 𝑣0 ∈ Λ′ ≔ Λ − 𝑝Λ.

Lemma 3.6 :  Fix an anisotropic vector 𝑣 ∈ 𝑉ℚ𝑝
, and let 𝑘𝑣 = isoΛ(𝑣). Then:

(i) for any 𝜀 > 0, the intersection Δ𝑣,𝑝 ∩ 𝑋𝑘𝑣−𝜀
𝑝,Λ  is empty.

(ii) If 𝑣⟂ is not a hyperbolic space, then

Δ𝑣,𝑝 ∩ 𝑋≤⌈3𝑘𝑣/2⌉
𝑝,Λ ≠ ∅. (3.5)

[TODO: Insert drawing]

Corollary 3.7 :  Fix 𝑚 ∈ ℚ×
𝑝 and 𝑘 > 0. If 𝑣 ∈ 𝑉ℚ𝑝

 with 𝑞(𝑣) = 𝑚 such that Δ𝑣,𝑝 ∩ 𝑋≤𝑘, then
𝑣 ∈ 𝑝−ℓΛ for ℓ ≤ 1

2 (𝑘 − ord𝑝(𝑚)).

Proof :  TODO: fill in □

3.3 Locally finite divisors

In this subsection, we combine the two above constructions. Fix a ℤ[1/𝑝]-lattice 𝐿 in 𝑉. Let
Γ be a subgroup of SO𝑉 which stabilises Λ. Such a group is called a 𝑝-arithmetic 𝑝-arithmetic
subgroup of SO𝑉. This is a discrete subgroup of SO𝑉(ℝ) × SO𝑉(ℚ𝑝).

The construction of mixed divisors relies on the following set of data:
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(i) a compact subset 𝐶 ⊂ 𝑋∞,
(ii) a finite subset 𝑆 ⊂ ℚ>0,

(iii) if 𝑉+ denotes the set of positive vectors, a set of integers (𝑎𝑣) ∈ ℤ𝑉+
 satisfying:

• 𝑎𝛾𝑣 = 𝑎𝑣 for all 𝛾 ∈ Γ,
• 𝑎𝑣 = 0 if Δ𝑣,∞ ∩ 𝐶 = ∅ or 𝑞(𝑣) ∉ 𝑆.

Definition 3.8 :  The formal sum

Δ ≔ ∑
𝑣∈𝑉+

𝑎𝑣 ⋅ Δ𝑣,𝑝 (3.1)

is called a locally rational finite quadratic divisor in 𝑋𝑝.

Note that for any basic affinoid 𝒜,

Δ ∩ 𝒜 ≔ ∑
𝑣∈𝑉+

Δ𝑣,𝑝∩𝒜≠∅

𝑎𝑣Δ𝑣,𝑝 (3.2)

is a finite formal sum. Indeed, Corollary 3.7, the set

{𝑣 ∈ 𝑉+ : Δ𝑣,∞ ∩ 𝐶, 𝑞(𝑣) ∈ 𝑆 and Δ𝑣,𝑝 ∩ 𝑋≤𝑘
𝑝,Λ} (3.3)

is both compact and discrete, hence finite.

4 Lecture 4-5: Kudla–Millson divisors
In this lecture, we will first turn back to the case of SL2(ℤ[1/𝑝]) to motivate the ensuing
constructions.

4.1 Modular symbols

Let Ω be an abelian group. An Ω-valued modular symbol is a function 𝑚 : ℙ1(ℚ) ×
ℙ1(ℚ) → Ω satisfying:
(i) 𝑚 is alternating, 𝑚(𝑟, 𝑠) = −𝑚(𝑠, 𝑟),

(ii) 𝑚 is additive, 𝑚(𝑟, 𝑠) + 𝑚(𝑠, 𝑡) = 𝑚(𝑟, 𝑡),

for all 𝑟, 𝑠, 𝑡 ∈ ℙ1(ℚ). We denote the set of such functions by MS(Ω). We can also describe
this in terms of divisors: let Div ℙ1(ℚ) = ℤ[ℙ1(ℚ)] be the group of divisors on ℙ1(ℚ), and
let Div0 ℙ1(ℚ) be the degree zero divisors, the kernel of the augmentation map ℤ[ℙ1(ℚ)] →
ℤ. Then MS(Ω) is equal to the set Homℤ(Div0 ℙ1(ℚ), Ω).
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If Γ is a group acting on ℙ1(ℚ) and Ω is a Γ-module, then we define the Γ-invariant modular
symbols to be

MS(Ω)Γ = HomΓ(Div0 ℙ1(ℚ), Ω)

= {𝑚 ∈ MS(Ω) : 𝑚(𝛾𝑠, 𝛾𝑡) = 𝛾 ⋅ 𝑚(𝑠, 𝑡) for all 𝑠, 𝑡 ∈ ℙ1(ℚ), 𝛾 ∈ Γ}.
(4.1)

Let Γ∞ ⊂ Γ be the stabiliser of ∞ ∈ ℙ1(ℚ). We define

𝐻1
par(Γ, Ω) = ker(𝐻1(Γ, Ω) → 𝐻1(Γ∞, Ω)), (4.2)

where the map is induced from the inclusion Γ∞ → Γ. The elements of 𝐻1
par(Γ,Ω) are called

parabolic cocycle classes. These may frequently be described in terms of modular symbols:

Lemma 4.1 :  Suppose ΩΓ = ΩΓ∞ . Then

MS(Ω)Γ ≅ 𝐻1
par(Γ, Ω). (4.3)

Proof ((sketch)) :  Let 𝑚 be a modular symbol, and define 𝜑(𝛾) ≔ 𝑚(∞, 𝛾∞). Then

𝜑(𝛾𝛾′) = 𝑚(∞, 𝛾𝛾′∞)

= 𝑚(∞, 𝛾∞) + 𝑚(𝛾∞, 𝛾𝛾′∞)

= 𝜑(𝛾) + 𝛾𝜑(𝛾′∞).

(4.4)

Since 𝑚 is alternating, 𝜑 is parabolic. Note that 𝐻1
par has no coboundaries: [insert proof]. □

Corollary 4.2 :  Let Γ = SL2(ℤ[1/𝑝]) and let ℳ× be the multiplicative group of rigid mero-
morphic functions on 𝔥𝑝, with the weight 0 action of Γ. Then

𝐻1
par(Γ, ℳ×) ≅ MS(Ω)Γ. (4.5)

Now fix 𝑟, 𝑠 ∈ ℙ1(ℚ), and let geo(𝑟, 𝑠) ⊂ 𝔥 be the unique oriented geodesic in the complex
upper half plane from 𝑟 and 𝑠. Similarly, if 𝑤 ∈ ℙ1(ℝ) is a real quadratic point, we denote
by geo(𝑤) ⊂ 𝔥 the oriented geodesic from 𝑤 to its conjugate 𝑤′. We may then define the
oriented intersection number ⟨geo(𝑟, 𝑠), geo(𝑤)⟩ between geo(𝑟, 𝑠) and geo(𝑤) as follows: fix
an orientation on the upper half plane, or equivalently, a compatible oriented basis for the
tangent plane at each point 𝑧 ∈ 𝔥. Since 𝑟, 𝑠 ∈ ℙ1(ℚ), one can easily show that geo(𝑟, 𝑠) and
geo(𝑤) intersect transversely in at most one point 𝑧 ∈ 𝔥. Then the intersection number is
1 if the induced basis on 𝑇𝑧 geo(𝑟, 𝑠) × 𝑇𝑧 geo(𝑤) has the same orientation as 𝑇𝑧𝔥, and −1
otherwise.
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Lemma 4.3 :  Let 𝜏 ∈ ℙ1(ℝ) be a real quadratic point. Then

Δ𝜏(𝑟, 𝑠) ≔ ∑
𝑤∈ SL2(ℤ)⋅𝜏

⟨geo(𝑟, 𝑠), geo(𝑤)⟩ ⋅ [𝑤] (4.6)

is an SL2(ℤ)-invariant modular symbol valued in ℙ1(ℝ).

Proof :  Note that additivity and alternation is clear from the definition of the intersection
number. However, we ought to check that the sum is in fact finite. Since SL2(ℤ) acts
transitively on ℙ1(ℚ), it suffices to check this for 𝑟 = 0 and 𝑠 = ∞. Then the statemnet is
reduced to showing that there are finitely many 𝑤 for which 𝑤 > 0 > 𝑤′, which follows from
an elementary argument. □

Now we will replace SL2(ℤ) with SL2(ℤ[1/𝑝]). The same proof, combined with
Corollary 4.2, shows that

𝜑(𝛾) ≔ ∑
𝑤∈ SL2(ℤ)⋅𝜏

⟨geo(∞, 𝛾∞), geo(𝜏)⟩ ⋅ 1
𝑧 − 𝑤 (4.7)

is a parabolic cocycle in 𝐻1
par(Γ, ℳ×). To construct rigid meromorphic cocycles, Darmon and

Vonk take the preimage under d log : 𝐻1
𝑓 (Γ, ℳ×) → 𝐻1

par(Γ, ℳ), giving an infinite product
of the form

𝜑(𝛾) = ∏
𝑤∈Γ𝜏

(𝑧 − 𝑤)⟨geo(∞,𝛾∞), geo(𝑤) (4.8)

4.2 From signature (2, 1) to (𝑟, 1)

We now put the results of the previous section into the context of orthogonal groups.

Example 4.4 :  Take 𝑉 = Mat2 (ℚ)Tr =0 and 𝑔(𝑣) = − det(𝑣) of signature (2, 1), and recall
that 𝐺 ≔ SO𝑉 is natural identified with PGL2, acting by 𝑔 ⋅ 𝑣 = 𝑔𝑣𝑔−1. The bilinear form is
⟨𝑣, 𝑤⟩ = Tr(𝑣𝑤#), where

(𝑎
𝑐

𝑏
𝑑)

#
≔ ( 𝑑

−𝑐
−𝑏
𝑎 ) (4.1)

is the adjugate.

There are two ways of identifying the corresponding symmetric space 𝑋∞ with 𝔥. The first is to
note that the map 𝑧 ↦ 𝑧⟂ identifies 𝑋∞ with the symmetric space 𝑋′

∞ for SO(1, 2) whose under-
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lying quadratic space is (𝑉, −𝑞). This may be described directly as in Example 2.4. Namely,
we have

�̃�∞ = {[𝑤] ∈ 𝒬(ℂ) : − Tr(𝑤𝑤#) < 0}, (4.2)

where as before 𝒬 is the quadric of isotropic lines in ℙ(𝑉). Note that 𝑤 ∈ 𝑉ℂ − {0} is isotropic
if and only if it has rank 1 as a matrix. Any rank 1 matrix is of the form

𝑤 = 𝑢1 ⋅ 𝑢𝑡
2 (4.3)

for some vectors 𝑢1, 𝑢2 in ℝ2.¹ Rescaling, and using Tr(𝑤) = 0, we may take

𝑤 = (𝜏
1) ⋅ (1 −𝜏) = (𝜏

1
−𝜏2

−𝜏 ). (4.4)

Furthermore, [𝑤] ∈ �̃�∞ exactly when (𝜏 − 𝜏)2 > 0, i.e. ℑ(𝜏) ≠ 0, and the connected component
𝑋∞ corresponds to 𝔥. It is easy to check that the map 𝑤 ↦ 𝜏 is PGL2(ℝ)-equivariant. Under
this map, note that 𝒬(ℚ) maps to ℙ1(ℚ).

This suggests that 𝒬(ℚ) might be the right analogue for ℙ1(ℚ) in the case of 𝑂(𝑟, 1).

Definition 4.5 :  Let Ω be a right 𝐺-module. Then we define

MS(Ω) ≔ Homℤ(ℤ[𝒬(ℚ)]0, Ω). (4.5)

Fix a 𝑝-arithmetic subgroup Γ ⊂ SO𝑉 as before. Then by adapting the proof of Corollary 4.2
one can show:

Lemma 4.6 :  There is an injective map

MS(Div†
rq 𝑋𝑝)

Γ
→ 𝐻1(Γ, Div†

rq 𝑋𝑝). (4.6)

Next, our goal is to try to construct elements of the left-hand side using analogues of modular
symbols.

Definition 4.7 :  Fix a pair of lines ℓ−, ℓ+ ∈ 𝒬(ℚ), and let

[ℓ−, ℓ+] ≔ {𝑧 ∈ 𝑋∞ : 𝑧 ⊂ ℓ− ⊕ ℓ+}. (4.7)

¹Indeed, if 𝑤 has rank 1, fix a vector 𝑢 in the image of 𝑤, unique up to scaling. Then for any 𝑣 ∈ ℂ2, 𝑤(𝑣) =
𝜆(𝑣) ⋅ 𝑢 for some linear functional 𝜆(𝑣). Writing 𝜆(𝑣) = ⟨𝑣, 𝑢2⟩, we find 𝐴𝑣 = (𝑢1 ⋅ 𝑢𝑡

2)𝑣.
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This is called the geodesic from ℓ− to ℓ+.

Note that it is naturally a one-dimensional submanifold of 𝑋∞.

Example 4.8 :  Suppose 𝑉 = ℝ3 with quadratic form 𝑥2 + 𝑦2 − 𝑧2, and identify 𝑋∞ with the
open unit disk {|𝑥| < 1} ⊂ ℝ2 via the map [𝑥 : 𝑦 : 𝑧] ↦ (𝑥/𝑧, 𝑦/𝑧) for 𝑧 ≠ 0.

Define the lines ℓ− = [3 : 4 : 5] and ℓ+ = [0 : 1 : 1] in ℓ± ∈ 𝒬(ℚ). They correspond to the
points ( 3

5 , 4
5 ) and (0, 1) on the unit circle. Then we have a parametrisation

[ℓ−, ℓ+] = {( 3𝑎
5𝑎 + 1, 4𝑎 + 1

5𝑎 + 1 ) : 𝑎 ∈ ℝ}. (4.8)

ℓ−
ℓ+

Fix a vector 𝑣 ∈ 𝑉 of positive norm. Recall that Δ𝑣,∞ = {𝑧 ∈ 𝑋∞ : 𝑧 ⊂ 𝑣⟂} is a subspace of 𝑋∞.
If 𝑣⟂ is anisotropic, then Δ𝑣,∞ does not interesect 𝒬(ℚ), and so the intersection [ℓ−, ℓ+] ∩
Δ𝑣,∞ is transversal, and we may define the oriented intersection number as earlier.

Example 4.9 :  Continuing the previous example, let 𝑣 = (1, 1, 0), and a quick computation
shows that 𝑣⟂ = {𝑥 + 𝑦 = 0}, which is anisotropic. Then Δ𝑣,∞ = {(𝑥, −𝑥) : 𝑥2 < 1

2 },

ℓ−
ℓ+

Δ𝑣,∞

and so [ℓ−, ℓ+] ∩ Δ𝑣,∞ = 0.

Remark 4.10 : The condition that 𝑣 be anisotropic is usually not satisfied. For example, if 𝑟 ≥
5, then 𝑣⟂ has signature (4, 1), and so the quadratic form represents zero by Lagrange’s four
square theorem.

Lemma 4.11 :  Let 𝑑 > 0, and let 𝐿 ⊂ 𝑉 be a ℤ-lattice. Then for any fixed ℓ± ∈ 𝒬(ℚ), the set
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{𝑣 ∈ 𝐿 : 𝑞(𝑣) = 𝑑 and Δ𝑣,∞ ∩ [ℓ−, ℓ+] ≠ ∅} (4.9)

is finite.

Proposition 4.12 :  Let Γ ⊂ 𝑂𝑉 be a 𝑝-arithmetic subgroup, and let 𝒪 be a finite union of Γ-
orbits such that for any 𝑣 ∈ 𝒪, 𝑣⟂ is anisotropic. Then for any ℓ± ∈ 𝒬(ℚ), the divisor

∑
𝑣∈𝒪

(Δ𝑣,∞ ∩ [ℓ−, ℓ+])Δ𝑣,𝑝 ∈ Div†
rq 𝑋𝑝 (4.10)

is a locally finite Γ-invariant rational quadratic divisor. Consequently, the map

𝒟𝒪 : 𝒬(ℚ) × 𝒬(ℚ) → Div†
rq 𝑋𝑝 (4.11)

defines a Γ-invariant modular symbol.

Applying Lemma 4.6 then gives a cocycle in 𝐻1(Γ, Div†
rq 𝑋𝑝).

4.3 From signature (𝑟, 1) to (𝑟, 𝑠)

For 𝑠 = 0, our quadratic space 𝑉 is positive definite, and consequently 𝑋∞ is compact. On
the other hand, a 𝑝-arithmetic subgroup Γ of SO𝑉 acts discretely on 𝑋𝑝. It is then natural to
study Γ-invariant divisors on Γ \ 𝑋𝑝, which we may interpret as classes in 𝐻0(Γ, Div†

rq 𝑋𝑝).

Based on this, it is natural to guess that in real signature (𝑟, 𝑠) there ought to be classes in
𝐻𝑠(Γ, Div†

rs 𝑋𝑝). To construct these, we will consider maps 𝐶𝑠(𝑋∞) → Div†
rq 𝑋𝑝 of the form

𝑐 ↦ ∑
𝑣∈𝒪

(𝑐 ∩ Δ𝑣,∞) ⋅ Δ𝑣,𝑝. (4.1)

However, in general these intersections may not be transverse. There are two ways to remedy
this: the first is to define the intersection numbers in terms of the cup product². We take the
second approach, which is more ad-hoc: fix 𝑣 ∈ 𝑉+, and consider the diagram

𝑑
𝐶𝑠(𝑋∞) ker(𝑑𝑠−1 : 𝐶𝑠−1(𝑋∞) → 𝐶𝑠−2(𝑋∞)) 𝐻𝑠−1(𝑋∞) → 0

𝐶𝑠(𝑋∞ − Δ𝑣,∞) ker(𝑑𝑠−1 : 𝐶𝑠−1(𝑋∞ − Δ𝑣,∞) → 𝐶𝑠−2(𝑋∞ − Δ𝑣,∞)) 𝐻𝑠−1(𝑋∞ − Δ𝑣,∞) → 0

Since 𝑋∞ − Δ𝑣,∞ is homotopic to 𝑆𝑠−1, the bottom right entry is isomorphic to ℤ. Let ℭ𝑠(𝑋∞)
be the subcomplex of 𝐶𝑠(𝑋∞) consisting of chains 𝑐 such that

²This requires some effort, as 𝑋∞ is contractible (hence cup products are 0) and Γ \ 𝑋 is not nice.
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𝑑𝑐 ∈ ker(𝑑𝑠−1 : 𝐶𝑠−1(𝑋∞ − Δ𝑣,∞) → 𝐶𝑠−2(𝑋∞ − Δ𝑣,∞)), (4.2)

for all 𝑣 ∈ 𝑉+. Informally, we can think of these as all the chains which intersect Δ𝑣,∞ trans-
versely. Given 𝒪 ⊂ 𝑉 a Γ-orbit, we formally obtain a Γ-cocycle

𝒟𝒪 ∈ 𝐻𝑠(Γ, Div†
rq 𝑋𝑝). (4.3)

They claim (see §2.4.2) that this is “given by”

𝑐 ↦ ∑
𝑣∈𝒪

(𝑐 ∩ Δ𝑣,∞)Δ𝑣,𝑝, (4.4)

when 𝑐 ∈ ℭ𝑠(𝑋∞), but this is not entirely precise. The key observation is that ℭ𝑠(𝑋∞) is a
resolution of ℤ as a ℤ[Γ]-module, so in the derived category of Γ-modules we get a map ℤ →
Div†[−𝑠], which is the same as a Γ-cocycle.

Write 𝔸𝑝,∞ for the adeles away from 𝑝 and ∞, and let 𝑉𝑝,∞ ≔ 𝑉 ⊗ 𝔸𝑝,∞. Let 𝒮(𝑉𝑝,∞) denote
the tensor product of local ℤ-valued Schwartz–Bruhat functions. This has a natural action
of Γ by precomposition, and for fixed 𝜑 ∈ 𝒮(𝑉𝑝,∞), 𝑚 ∈ ℚ and 𝑟 ∈ ℤ we define the finite
union of Γ-orbits,

𝒪(𝑚, 𝜑, 𝑟) = {𝑣 ∈ 𝑉 : 𝑞(𝑣) = 𝑚, 𝜑(𝑣) = 𝑟}. (4.5)

Note that this is empty for almost all 𝑟, since 𝜑 can only take finitely many values. This makes
the following sum well-defined:

Definition 4.13 :  A “Kudla–Millson”-divisor is the rational quadratic divisor on 𝑋𝑝 given
by the expression

𝒟𝑚,𝜑 = ∑
𝑟∈ℤ

𝑟 ⋅ 𝒟𝒪(𝑚,𝜑,𝑟). (4.6)

In Borcherds-like applications, it is useful to fix a ℤ[1/𝑝]-lattice 𝐿 such that Γ acts trivially
on the discriminant module 𝐷𝐿 ≔ 𝐿∨/𝐿. For 𝛽 ∈ 𝐷𝐿 and �̂� ⊂ 𝑉𝑝,∞ the completion of 𝐿, note
that that 𝛽 + �̂� is Γ-invariant, so 𝟙𝛽+�̂� ∈ 𝒮(𝑉𝑝,∞)Γ. We therefore set

𝒟𝑚,𝛽 ≔ 𝒟𝒪(𝑚,𝟙𝛽+�̂�). (4.7)

5 Appendix: Non-split orthogonal groups
We first consider the situation over ℝ. Let (𝑉, 𝑞) be a quadratic space over ℝ of signature
(𝑟, 𝑠), with 𝑛 = 𝑟 + 𝑠. After diagonalizing, we can assume 𝑞 has the shape
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𝑞(𝑥) = ∑
𝑟

𝑗=1
𝑥2

𝑗 − ∑
𝑠

𝑗=1
𝑥2

𝑟+𝑗. (5.8)

The orthogonal group of 𝑉 is then naturally identified with

𝑂(𝑚, 𝑛) ≔ {𝑔 ∈ GL𝑛(ℝ) : 𝑔(𝐼𝑟
0

0
−𝐼𝑠

)𝑔𝑡 = (𝐼𝑟
0

0
−𝐼𝑠

)}, (5.9)

where 𝐼𝑟 is the 𝑟 × 𝑟 identity matrix. Similarly, SO(𝑚, 𝑛) ≔ 𝑂(𝑚, 𝑛) ∩ SL𝑛(ℝ).

Proposition 5.1 :  Suppose 𝑟, 𝑠 > 0. Then the group SO(𝑟, 𝑠) is not connected.

Proof :  The map

SO(𝑟, 𝑠) → ℝ× given by (𝐴
𝐶

𝐵
𝐷) ↦ det(𝐴), (5.10)

where the blocks are as in the previous definition, is surjective and continuous, so SO(𝑟, 𝑠)
has at least two connected components. □

It turns out that SO(𝑟, 𝑠) has two connected components, and we denote the component
of the identity by SO+(𝑟, 𝑠). We then have the following table of groups and their maximal
compact subgroups:³

𝐺 𝑂(𝑟, 𝑠) SO(𝑟, 𝑠) SO+(𝑟, 𝑠)
𝐾 𝑂(𝑟) × 𝑂(𝑆) 𝑆(𝑂(𝑟) × 𝑂(𝑠)) SO(𝑟) × SO(𝑠)

We can decompose 𝑉 as 𝑉 = 𝑉+ ⊕ 𝑉−, where 𝑉+ is the span of 𝑥1, …, 𝑥𝑟, and 𝑉− is the span
of the remaining basis vectors. Then SO+(𝑟, 𝑠) is precisely the subgroup of SO(𝑟, 𝑠) which
preserves the individual orientations on 𝑉+ and 𝑉−.

Example 5.2 :  In this example, we consider SO(2, 2), which can be described explicitly through
its exceptional isogeny with SL2(ℝ) × SL2(ℝ). The first hint that such an isogeny might exist
comes from the Dynkin diagrams: 𝔰𝔬4 has Dynkin diagram 𝐷2, which is simply two dots (and
no lines), which matches up with the union of the Dynkin diagram for each 𝔰𝔩2, which is a single
dot. I think this can be made precise using Satake–Tits diagrams.

More concretely, fix the vector space 𝑉 = Mat2(ℝ). One can check that det defines a quadratic
form on 𝑉. Furthermore, since

³A reference for this is https://www.math.toronto.edu/mein/teaching/LieClifford/cl12.pdf.
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det(𝑎
𝑐

𝑏
𝑑) = 𝑎𝑑 − 𝑏𝑐 = 1

4((𝑎 + 𝑑)2 − (𝑎 − 𝑑)2 + (𝑏 − 𝑐)2 + (𝑏 + 𝑐)2), (5.11)

the space 𝑉 has signature (2, 2). An orthogonal basis for 𝑉 is given by

𝐼 = (1
0

0
1), ℎ = (1

0
0

−1), 𝑋− = (0
1

1
0) and 𝑋+ = ( 0

−1
1
0). (5.12)

Then 𝐼 and 𝑋+ span 𝑉+, and ℎ and 𝑋− span 𝑉−.

Note that GL2(ℝ) × GL2(ℝ) acts naturally on 𝑉 via (𝑔1, 𝑔2) ⋅ 𝑣 = 𝑔1𝑣𝑔−1
2 . This gives an

embedding GL2(ℝ) × GL2(ℝ) → GL4(ℝ), but I don’t think it’s the natural one. Let’s find
the elements which preserve det: if det(𝑔1𝑣𝑔−1

2 ) = det(𝑣) for all 𝑣 ∈ 𝑉, then evidently det(𝑔1) =
det(𝑔2), and vice versa. Therefore, we obtain a map

�̃� ≔ GL2(ℝ) ×det GL2(ℝ) → 𝑂𝑉 ≅ 𝑂(2, 2). (5.13)

Note that the diagonal matrices act trivially, so the kernel of this map is ℝ×. The map is
not surjective; consider the map sending 𝐼 to −𝐼 and preserving the other basis vectors. This is
certainly an orthogonal transformation, but it is straightforward to check by bashing matrix
multiplication this is not encoded by an element of �̃�.

We claim that the image of �̃� is in fact SO(2, 2). One way to see this is by noting that both
groups have two connected components, and then showing that the induced maps on Lie algebras
is surjective. In other words, we have a short exact sequence

1 → ℝ× →Δ GL2(ℝ) ×det GL2(ℝ) → SO(2, 2) → 1. (5.14)

In fact, this proves that �̃� = GSpin𝑉. It also gives an explicit description of SO+(2, 2); it is
isomorphic to

GL2 (ℝ)+ ×det GL2(ℝ)/ℝ×. (5.15)

Example 5.3 :  We now turn to SO(2, 1). Fix the quadratic space 𝑉 = Mat2 (ℚ)Tr =0 with
quadratic form 𝑞(𝑣) = det(𝑣). Since

det(𝑎
𝑐

𝑏
−𝑎) = 𝑎2 − 𝑏𝑐 = 𝑎2 + 1

4((𝑏 − 𝑐)2 − (𝑏 + 𝑐)2), (5.16)

this has signature (2, 1), and an orthogonal basis is given by

𝐼 = (1
0

0
1), 𝑋± = ( 0

∓1
1
0), (5.17)
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so that det(𝑋±) = ±1. If we write

𝑔 = 𝑎1𝐼 + 𝑎2𝑋+ + 𝑎3𝑋−, (5.18)

then det(𝑔) = 𝑎2
1 + 𝑎2

2 − 𝑎2
3.

Note that PGL2 acts naturally on 𝑉 by matrix conjugation, 𝑔 ⋅ 𝑣 = 𝑔𝑣𝑔−1, giving a map
PGL2 → SO𝑉.

Example 5.4 :  In this example we find a convenient model for SO(3, 1). The punchline is that
it is naturally isomorphic to PSL2(ℂ), viewed as a real Lie group. Intuitively, we can think
SL2(ℂ) as a form of SL2(ℝ) × SL2(ℝ), so this is compatible with the previous example. NB:
I will take a slightly different model from the one in the paper! This seems simpler to me, but
there might be a good reason why they chose the other one.

For 𝑋 ∈ Mat2(ℂ), let 𝑋† ≔ 𝑋𝑡, the conjugate transpose. We set

𝑉 = {𝑋 ∈ Mat2(ℂ) : 𝑋† = 𝑋}. (5.19)

Explicitly, it consists of matrices

𝑋 = ( 𝑎
𝑥 − 𝑖𝑦

𝑥 + 𝑖𝑦
𝑑 ), (5.20)

so

det(𝑋) = 𝑎𝑑 − 𝑥2 − 𝑦2 = 1
4((𝑎 + 𝑑)2 − (𝑎 − 𝑑)2) − 𝑥2 − 𝑦2. (5.21)

From this we see that a convenient basis consists of 𝐼, ℎ and 𝑋−, as in the previous example, and
𝑖 ⋅ 𝑋+. Moreover, the form 𝑞(𝑋) = − det(𝑋) has real signature (3, 1).

We act by SL2(ℂ) in a similar way as before: 𝑔 ⋅ 𝑋 ≔ 𝑔𝑋𝑔†. Note that (𝑔𝑋𝑔†)† = 𝑔𝑋†𝑔† =
𝑔𝑋𝑔†, so the action on 𝑉 is well-defined.
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