Étale cohomology seminar: étale sheaves

Martin Ortiz

1. Sites and Grothendieck topologies

We want to abstract the definition of topology to a relative point of view, e.g the poset of open sets on a topological space X is equivalent to the set of open immersions $U \to X$.

Definition

A site (\mathbf{T}, \mathbf{C}) on a category \mathbf{C} consists of a set of distinguished maps $(U_i \to U)_{i \in I}$ for each $U \in \mathbf{C}$, called *coverings* of U, satisfying the following axioms

- If $(U_i \to U)_{i \in I}$ is a covering and $V \to U$ is a map in **C**, the fiber products $U_i \times_U V$ exist and $(U_i \times_U V)_{i \in I}$ is a covering of V.
- ② If $(U_i \to U)_{i \in I}$ is a covering of U, and $(U_{ij} \to U_i)_{j \in J}$ is a covering for each U_i , then $(U_{ij} \to U)$ is a covering of U.
- **3** $(f: U \rightarrow U)$ is a covering of U whenever f is an isomorphism.

The set of coverings on **C** is called a Grothendieck (pre-)topology.

2. Sites and Grothendieck topologies

Example

If X is a topological space, and let \mathbb{C} be the poset of open subsets. For $U, U' \subseteq V$, $U \times_V U' = U \cap U'$, so we can define $(\phi_i : U_i \to U)$ to be a covering if $\cup \phi_i(U_i) = U$ (the family of maps is *surjective*).

Example

In particular, if X is a scheme, the Zariski site X_{Zar} is defined as above using X as a topological space with the Zariski topology, so the coverings are surjective families of open immersions.

3. Sites and Grothendieck topologies

Example (Small étale site)

The small étale site $X_{\text{\'et}}$ has as underlying category 'et/X, whose morphisms are étale maps $U \to X$, and whose arrows are morphisms $\phi: U \to V$ in Sch/X:

The coverings $(\phi_i : U_i \to U)$ are surjective families $(\cup \phi_i(U_i) = U)$ of étale morphisms in 'et/X. This is well-defined since étale maps are a stable class.

4. Sheaves on sites

Definition

A presheaf of sets on a site (\mathbf{T},\mathbf{C}) is a functor $F:\mathbf{C}^{\mathrm{op}}\to\mathrm{Set}$, i.e. a presheaf on the underlying category. Similarly a presheaf of abelian groups if a functor $F:\mathbf{C}^{\mathrm{op}}\to\mathrm{Ab}$. For a map $f:U'\to U$ in \mathbf{C} , and $s\in F(U)$ we denote the image of s under $F(f):F(U)\to F(U')$ as s|U'.

Note that the definition does not depend of the family of coverings.

Definition

A morphism $\phi: F \to F'$ of presheaves if just a natural transformation of functors: maps $\phi(U): F(U) \to F(U')$ commuting with the restriction maps.

The category Pshv(\mathbf{T}) of presheaves of abelian groups on \mathbf{T} is in fact an abelian category, since (co)kernels can be computed objectwise, and $F \to F' \to F''$ is exact iff it is exact on every U.

5. Sheaves on sites

Definition

A *sheaf* on a site **T** is a presheaf *F* such that

$$F(U) \stackrel{i}{\longrightarrow} \prod_{i \in I} F(U_i) \Longrightarrow \prod_{(i,j) \in I \times I} F(U_i \times_U U_j)$$
 (S)

is exact for any covering $(U_i \to U)_{i \in I}$. That is, any $s \in F(U)$ is uniquely determined by some $f_i \in F(U_i)$ such that $f_i|U_i \times_U U_i = f_i|U_i \times_U U_i$ for all i, j.

- A morphism of sheaves is defined to be a morphism of presheaves: Shv(T) is a full subcategory of PShv(T).
- An étale sheaf is a sheaf on the étale site $X_{\text{\'et}}$.
- For an étale sheaf F, $F(\coprod U_i) = \prod F(U_i)$, so setting I empty means that $F(\emptyset) = 0$ (on abelian groups).

6. A criterion to be a sheaf

Proposition

Let F be a presheaf on $X_{\text{\'et}}$. Then F is a sheaf if it is a sheaf for coverings consisting of open immersions, and if for a covering $(V \to U)$ with both affine $F(U) \to F(V) \rightrightarrows F(V \times_U V)$ is exact.

Proof

- The first condition implies that $F(\coprod_i U_i) = \prod_i F(U_i)$.
- The sequence (S) for a covering $(U_i \to U)_{i \in I}$ with I finite is isomorphic to the sequence for the single map $(\coprod_i U_i \to U)$, since

$$(\coprod_i U_i) \times_U (\coprod_i U_i) = \coprod_{(i,j)} U_i \times_U U_j$$

• Since a finite disjoint union of affines is affine is affine the second condition implies that (S) is exact for $(U_i \rightarrow U)$ with I finite and U_i affine.

7. A criterion to be a sheaf

- Given a covering $(U_j \to U)$, let $U' = \coprod_j U_j$. We want to prove that (S) is exact for $(f: U' \to U)$. Cover $U = \cup U_i$ with open affines, and let $f^{-1}(U_i) = \cup_k U'_{ik}$. Since f is open each $f(U'_{ik})$ is open in U_i , so there is a finite cover $(U'_{ik} \to U_i)_{i \in \mathcal{K}_i}$.
- By repeating the process we can assume $U' = \cup U'_{ik}$, $U = \cup U_i$ such that $(U'_{ik} \to U_i)$ is always a finite covering.

8. Examples of étale sheaves

Example (Structure sheaf)

For $U \to X$ an étale map define $\mathcal{O}_{X_{\operatorname{\acute{e}t}}}(U) = \Gamma(U,\mathcal{O}_U)$. This is a sheaf on X_{Zar} , so by the proposition above we only need to check that for a faithfully flat map of rings $A \to B$ (recall $(\operatorname{Spec}(B) \to \operatorname{Spec}(A))$ is flat and surjective hence faithfully flat)

$$0 \to A \to B \xrightarrow{b \mapsto 1 \otimes b - b \otimes 1} B \otimes_A B$$

is exact. (Exercise).

9. Examples of étale sheaves

Example (Representable sheaf)

For a X-scheme Z, the presheaf $F(U) := \operatorname{Hom}_X(U, Z)$ is in fact a sheaf. It easy to check it is a sheaf on X_{Zar} . Thus it suffices to check that

$$Z(A) \to Z(B) \rightrightarrows Z(B \otimes_A B)$$

is exact. For $Z = \operatorname{Spec}(R)$ the sequence becomes

$$\mathsf{Hom}_{A-\mathsf{alg}}(R,A) \to \mathsf{Hom}(R,B)_{A-\mathsf{alg}} \rightrightarrows \mathsf{Hom}_{A-\mathsf{alg}}(R,B \otimes_A B),$$

which follows by the exactness of the sequence in the previous slide. Using a patching argument we can extend this to an arbitrary Z. E.g. for $Z = \operatorname{Spec}(\mathbb{Z}[t,t^{-1}]/(t^n-1)) \times X$ we obtain

$$\mu_n(U) := \operatorname{\mathsf{Hom}}_X(U,Z) = \operatorname{\mathsf{Ker}}(\Gamma(U,\mathcal{O}_U) \xrightarrow{s \to s''} \Gamma(U,\mathcal{O}_U)).$$

10. Examples of étale sheaves

Example (Constant sheaf)

Let X be a quasi-compact scheme and $A \in \text{Ab/Set}$. Define the sheaf \underline{A} by $\underline{A}(U \to X) = A^{\pi_0(U)}$ (so functions $U \to A$ constant on each connected component). A map $f: V \to U$ satisfies $f(\pi_0(V)) \subseteq \pi_0(U)$, so the restriction map is defined by precomposition by f.

Example (Locally constant sheaf)

An étale sheaf F is locally constant if for some covering $(U_i \to X)$ $F|U_i$ is constant for each i. Example of locally constant but not constant (for later): for $X = \operatorname{Spec}(k)$, let M = k'/k be a finite separable extension viewed as a G-module.

11. Étale sheaves on Spec(k)

- Let k be a field and $X = \operatorname{Spec}(k)$. Then a presheaf of abelian groups F on $X_{\operatorname{\acute{e}t}}$ can be identified with a covariant functor from the category of étale algebras over k: they are of the form $\prod_i^n K_i$ where K_i/k is a finite separable extension of fields.
- Using the criterion to be a sheaf, F is a sheaf iff $F(\prod A_i) = \bigoplus F(A_i)$ for étale algebras A_i (sheaf on Zariski site, any $U \to \operatorname{Spec}(k)$ is discrete), and if for every finite extension L'/L of finite separable extensions of k

$$F(L) \longrightarrow F(L') \xrightarrow{\phi_2} F(L' \otimes_L L') \quad (*)$$

is exact. This is because in the proof of our criterion, we can restrict to coverings $(V \to U)$ of arbitrarily small affine opens.

12.Étale sheaves on Spec(k)

Proposition

It is enough to check exactness of (*) on Galois extensions L'/L, and in that case exactness is equivalent to $F(L) \cong F(L')^G$, where $G = \operatorname{Gal}(L'/L)$ acts on F(L') via $F(\sigma)$ for $\sigma : L' \to L'$.

Proof

Suppose first that L'/L is Galois. For $\sigma \in G$ consider

$$L' \xrightarrow[x \mapsto x \otimes 1]{} L' \otimes_L L' \xrightarrow{\psi_{\sigma}: x \otimes y \mapsto x \sigma(y)} L',$$

if $z \in F(L')$ is in the equalizer of ϕ_1, ϕ_2 (*) then $F(\sigma)(z) = z$ for all $\sigma \in G$.

Conversely, suppose $z \in F(L')^G$,

$$(\psi_{\sigma})_{\sigma}: L' \otimes_{L} L' \to \prod_{\sigma \in G} L'$$

 $x \otimes y \mapsto (x\sigma(y))_{\sigma}$

is an isomorphism, so $(F(\psi_{\sigma}))_{\sigma}$ is injective and thus $\phi_1(z) = \phi_2(z)$. Now suppose that (*) is exact for Galois extensions L''/L. For an arbitrary L'/L let L'' be the Galois closure of L' in L: L''/L'/L

$$F(L) \longrightarrow F(L') \Longrightarrow F(L' \otimes_L L')$$

$$\downarrow_{id} \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F(L) \longrightarrow F(L'') \Longrightarrow F(L'' \otimes_L L'')$$

The bottom row is exact by assumption. Since $F(L) \to F(L'')$ is injective so is $F(L) \to F(L')$ (and $F(L') \to F(L'')$). After an easy diagram chase the top row is also exact.

14. Étale sheaves on Spec(k)

We have proved: an étale sheaf on Spec(k) can be identified with a covariant functor F from étale algebras to abelian groups satisfying

- $F(\prod_i A_i) = \bigoplus_i F(A_i)$ for finitely many étale algebras A_i .
- ② $F(L) = F(L')^{\text{Gal}(L'/L)}$ for a finite Galois extension L'/L, where L', L/k are finite separable extensions.

15.Étale sheaves on Spec(k)

Definition

For a profinite group G, a G-module A is discrete if the stabilizer of each element is open, i.e. $A = \bigcup A^U$ for U open subgroups.

Fix a separable closure k^{sep} of k and let $G = \text{Gal}(k^{\text{sep}}/k)$. For a sheaf F define

$$M_F = \varinjlim F(k'),$$

where k' runs over finite separable extensions k'/k. Then G acts on F(k') whenever k'/k is Galois, so it acts on the direct limit. M_F is in fact a discrete G-module, since

$$(M_F)^{\mathsf{Gal}(k^{\mathsf{sep}}/k')} = F(k').$$

16.Étale sheaves on Spec(k)

Conversely, let M be a discrete G-module. Define a presheaf F_M by

$$F_M(A) = \operatorname{Hom}_G(F(A), M),$$

where $F(A) = \operatorname{Hom}_{k-A/g}(A, k^{\text{sep}})$. For a finite separable extension k'/k

$$G/\operatorname{Gal}(k^{\operatorname{sep}}/k')\cong F(k')$$

as a *G*-module, so $F_M(k') \cong M^{\operatorname{Gal}(k^{\operatorname{sep}}/k')}$. Under this isomorphism, for $f: k' \to k''$,

$$M^{\operatorname{Gal}(k^{\operatorname{sep}}/k')} \to M^{\operatorname{Gal}(k^{\operatorname{sep}}/k'')}$$

 $x \mapsto \sigma x$

where $\sigma | k' = f$. F_M is indeed a sheaf:

- $F_M(\prod_i k_i) = \bigoplus_i F_M(k_i)$ for finite I.
- For k''/k' finite Galois $F_M(k'')^{Gal(k''/k')} = F_M(k')$.

17. Étale sheaves on Spec(k)

Proposition

The maps $F o M_F$ and $M o F_M$ form an equivalence of categories between the categories of étale sheaves on Spec(k) and discrete G-modules.

Proof.

We check that $M \to F_M$ is fully faithful and essentially surjective:

- $\operatorname{Hom}_G(M, M') \to \operatorname{Hom}(F_M \to F_{M'})$ is bijective, since the $F_M(k') = M^{\operatorname{Gal}(k^{\operatorname{sep}}/k')}$ cover M (discreteness condition).
- $F \cong F_{M_F}$ canonically: $F_{M_F}(k') = (\varinjlim F(k''))^{\operatorname{Gal}(k^{\operatorname{sep}}/k')} \cong F(k').$
- $F o M_F$ is also functorial, for $\phi : F o F'$ $\phi(k') : F(k') o F'(k')$ commutes with the action of G, so it extends to a map on the direct limits $M_F o M_{F'}$.

