Proper base change Il

Etale cohomology study group

Wojtek Wawrdéw

2 July 2021

Wojtek Wawréw Proper base change Il



Main goal:

Base change works for any proper morphism f : X — Y, i.e. for
any torsion étale sheaf F on X and morphism g :Y' — Y, we

have g*(R"f.F) = R"f!(g*F).
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Main goal:

Base change works for any proper morphism f : X — Y, i.e. for
any torsion étale sheaf F on X and morphism g :Y' — Y, we

have g*(R"f.F) = R"f!(g*F).

We have reduced this to:

Proposition

Base change works for the structure morphism IP)%, —Y.
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Main goal:

Base change works for any proper morphism f : X — Y, i.e. for
any torsion étale sheaf F on X and morphism g :Y' — Y, we

have g*(R"f.F) = R"f!(g*F).

We have reduced this to:

Proposition

Base change works for the structure morphism IP)%, —Y.

Key case:

Proposition

Let A be a strictly henselian local ring, X = ]P’i\, Xo the special
fiber. Then HZ,(X,F) = HL,(Xo, Flx,)-
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Review 2: Injective Boogaloo

Key reduction (follows from the n = 0 case):

Base change holds for f : X — Y iff for all injective Z/(-sheaves T
onXet and g : Y' = Y, g 1T is fl-acyclic: R"f!(g'~1T) =0 for
all n> 0.
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Review 2: Injective Boogaloo

Key reduction (follows from the n = 0 case):

Base change holds for f : X — Y iff for all injective Z/(-sheaves T
onXet and g : Y' = Y, g 1T is fl-acyclic: R"f!(g'~1T) =0 for
all n> 0.

Therefore it is enough to show:

Proposition

Let A be a henselian local ring, X = ]P’i\, Xo the special fiber. For
any injective étale 7./¢-module  on X, HZ,(Xo,Z|x,) = 0 for
n> 0.
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Vanishing for n =1

Let £ € HL,(Xo,Z|x,), we want to show & = 0.
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Vanishing for n =1

Let £ € HY,(Xo,Z|x,), we want to show & = 0. Every torsion
abelian sheaf is a filtered colimit of constructible sheaves, so ¢ is
the image of some ¢ € HL,(Xo, F|x,), F constructible, under

et
F -7
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Vanishing for n =1

Let £ € HY,(Xo,Z|x,), we want to show & = 0. Every torsion
abelian sheaf is a filtered colimit of constructible sheaves, so ¢ is
the image of some ¢ € HZ,(Xo, F|x,), F constructible, under
F — I. If ¢ lifts to ¢’ € H2,(X,F), we are done by the diagram:

(e HL(X, F) ——— HL(X,T)

l |

CE H;t(X07f‘Xo) — Hét(X07I‘Xo) > f
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Vanishing for n =1

Let £ € HY,(Xo,Z|x,), we want to show & = 0. Every torsion
abelian sheaf is a filtered colimit of constructible sheaves, so ¢ is
the image of some ¢ € HZ,(Xo, F|x,), F constructible, under
F — I. If ¢ lifts to ¢’ € H2,(X,F), we are done by the diagram:

(e HL(X, F) ——— HL(X,T)

l |

CE H;t(X07f‘Xo) — Hét(X07I‘Xo) > f

In general ¢ need not lift, but we will modify F to achieve that.
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Reductions to find a lift

F embeds into a sheaf F/ which is a product of ones of the form
f.M, where M is a finite abelian group and f : Y — X is finite.
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Reductions to find a lift

F embeds into a sheaf F/ which is a product of ones of the form
f.M, where M is a finite abelian group and f : Y — X is finite.
Since Z is injective the map factors through F’/, so we may replace
F by F’, or one of these factors. Thus we may take F = .M.
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Reductions to find a lift

F embeds into a sheaf F/ which is a product of ones of the form
f.M, where M is a finite abelian group and f : Y — X is finite.
Since Z is injective the map factors through F’/, so we may replace
F by F’, or one of these factors. Thus we may take F = .M.

By Leray spectral sequence + vanishing of R"f, (since f is finite),
we have

HE (X, M) = HE, (Y, M),
Hét(X07 f*M‘Xo) = H;t(y()vM’Yo)'
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Reductions to find a lift

F embeds into a sheaf F/ which is a product of ones of the form
f.M, where M is a finite abelian group and f : Y — X is finite.
Since Z is injective the map factors through F’/, so we may replace
F by F’, or one of these factors. Thus we may take F = .M.

By Leray spectral sequence + vanishing of R"f, (since f is finite),
we have

HE (X, M) = HE, (Y, M),
Hét(X07 f*M‘Xo) = H;t(y()vM’Yo)'

Now, at the level of Y, we can lift: H! classifies étale M-torsors,
which are represented by finite étale schemes. By henselianness
they lift from Yp to Y uniquely.
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Reductions to find a lift

F embeds into a sheaf F/ which is a product of ones of the form
f.M, where M is a finite abelian group and f : Y — X is finite.
Since Z is injective the map factors through F’/, so we may replace
F by F’, or one of these factors. Thus we may take F = .M.

By Leray spectral sequence + vanishing of R"f, (since f is finite),
we have

He(X, f.M) = Hg (Y, M),
Hét(X07 f*M‘Xo) = H;t(y()vM’Yo)'
Now, at the level of Y, we can lift: H! classifies étale M-torsors,
which are represented by finite étale schemes. By henselianness
they lift from Yp to Y uniquely.

Hence classes from HL.(Xo, f.M|x,) lift to H,(X, f.M) and we can
proceed as before.
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Covers by affines and vanishing of cohomology

We want to show that given an injective sheaf on X = P}, we
have HZ,(Xo,Z|x,) = O for injective Z/¢-module Z for n > 1.
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Covers by affines and vanishing of cohomology

We want to show that given an injective sheaf on X = P}, we
have HZ,(Xo,Z|x,) = O for injective Z/¢-module Z for n > 1. We
claim that this follows because X is a union of two affine schemes:
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Covers by affines and vanishing of cohomology

We want to show that given an injective sheaf on X = P}, we
have HZ,(Xo,Z|x,) = O for injective Z/¢-module Z for n > 1. We
claim that this follows because X is a union of two affine schemes:

Let X be a separated scheme covered by k + 1 affine opens,
Z C X closed subscheme, T an injective étale 7 /¢-module. Then
H2.(Z,Z|z) =0 for n > k.
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Covers by affines and vanishing of cohomology

We want to show that given an injective sheaf on X = P}, we
have HZ,(Xo,Z|x,) = O for injective Z/¢-module Z for n > 1. We
claim that this follows because X is a union of two affine schemes:

Let X be a separated scheme covered by k + 1 affine opens,
Z C X closed subscheme, T an injective étale 7 /¢-module. Then
H2.(Z,Z|z) =0 for n > k.

The hard part is k = 0, the rest follows by induction using
Mayer-Vietoris exact sequence: if X = UU V, U affine, V union of
k affines, then we have U N V union of k affines and

0= l_lgt_l(Uﬁ szaz’Z) - Hgt(Z7I’Z)
— HL,(UNZ,Z|z)® H;(VNZ,Z|z)=0

for n > k.
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Affine schemes: Gabber's affine proper base change

We are thus reduced to showing vanishing on affine schemes.
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Affine schemes: Gabber's affine proper base change

We are thus reduced to showing vanishing on affine schemes. In
the case of henselian rings, a stronger result is available:

Theorem (Gabber)

Let (A, 1) be a henselian pair, X = Spec A, Z = Spec A/l. For any
torsion étale sheaf 7 on X we have HZ,(X,F) = H(Z,F|z).
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Affine schemes: Gabber's affine proper base change

We are thus reduced to showing vanishing on affine schemes. In
the case of henselian rings, a stronger result is available:

Theorem (Gabber)

Let (A, 1) be a henselian pair, X = Spec A, Z = Spec A/l. For any
torsion étale sheaf 7 on X we have HZ,(X,F) = H(Z,F|z).

Idea: induction on n. n = 0 is known from before.
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Affine schemes: Gabber's affine proper base change

We are thus reduced to showing vanishing on affine schemes. In
the case of henselian rings, a stronger result is available:

Theorem (Gabber)

Let (A, 1) be a henselian pair, X = Spec A, Z = Spec A/l. For any
torsion étale sheaf 7 on X we have HZ,(X,F) = H(Z,F|z).

Idea: induction on n. n =0 is known from before. Pick nonzero

¢ € H"(X, F). There exists an injection F — F’ such that £ maps
to zero in H"(X, F') (by argument like before + pass to extension
of Y with large function field; for n = 1 this is trivialization of an
étale torsor.)
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Affine schemes: Gabber's affine proper base change

We are thus reduced to showing vanishing on affine schemes. In
the case of henselian rings, a stronger result is available:

Theorem (Gabber)

Let (A, 1) be a henselian pair, X = Spec A, Z = Spec A/l. For any
torsion étale sheaf 7 on X we have HZ,(X,F) = H(Z,F|z).

Idea: induction on n. n =0 is known from before. Pick nonzero

¢ € H"(X, F). There exists an injection F — F’ such that £ maps
to zero in H"(X, F') (by argument like before + pass to extension
of Y with large function field; for n = 1 this is trivialization of an
étale torsor.) Take short exact sequence 0 - F - F' — F" — 0
and chase in the diagram to show image of £ is nonzero:

HIZY(X, F) — HEH X, F) — HI(X, F) — HL(X,F")
1 4 l {
HI-YZ,F|z) — HE Y Z,F"|z) — HI(Z,F|z) — HI(Z,F'|7).

Wojtek Wawréw Proper base change Il



Vanishing on affine schemes

Let X = Spec A any affine scheme, Z = Spec A/l a closed
subscheme, 7 an injective torsion étale sheaf. We want
HZ,(Z,Z|z) =0 for n > 0.

Wojtek Wawréw Proper base change Il



Vanishing on affine schemes

Let X = Spec A any affine scheme, Z = Spec A/l a closed
subscheme, 7 an injective torsion étale sheaf. We want
HZ,(Z,Z|z) =0 for n > 0.

Let A" be the henselization of (A, /)—colimit over all étale B — A
such that B/IB = A/l.
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Vanishing on affine schemes

Let X = Spec A any affine scheme, Z = Spec A/l a closed
subscheme, 7 an injective torsion étale sheaf. We want
HZ,(Z,Z|z) =0 for n > 0.

Let A" be the henselization of (A, /)—colimit over all étale B — A
such that B/IB =2 A/l. Then Z = Spec A" /IA", so by Gabber's
theorem HZ,(Z,Z|z) = Hgt(SpecAh,I\specAh).
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Vanishing on affine schemes

Let X = Spec A any affine scheme, Z = Spec A/l a closed
subscheme, 7 an injective torsion étale sheaf. We want
HZ,(Z,Z|z) =0 for n > 0.

Let A" be the henselization of (A, /)—colimit over all étale B — A
such that B/IB =2 A/l. Then Z = Spec A" /IA", so by Gabber's
theorem HZ,(Z,Z|z) = HZ,(Spec A", T|spec an). But

Hgt(SpeC B, I|Spec B) =0

Hgt(Spec Ah? I|SpecAh) = l'_m>
B

since all Z|spec g are injective.
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Vanishing on affine schemes

Let X = Spec A any affine scheme, Z = Spec A/l a closed
subscheme, 7 an injective torsion étale sheaf. We want
HZ,(Z,Z|z) =0 for n > 0.

Let A" be the henselization of (A, /)—colimit over all étale B — A
such that B/IB =2 A/l. Then Z = Spec A" /IA", so by Gabber's
theorem HZ,(Z,Z|z) = HZ,(Spec A", T|spec an). But

Hgt(SpeC B, I|Spec B) =0

Hgt(Spec Ah? I|SpecAh) = l'_m>
B

since all Z|spec g are injective.

This, finally, completes the proof of proper base change!
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Vanishing on affine schemes

Let X = Spec A any affine scheme, Z = Spec A/l a closed
subscheme, 7 an injective torsion étale sheaf. We want
HZ,(Z,Z|z) =0 for n > 0.

Let A" be the henselization of (A, /)—colimit over all étale B — A
such that B/IB =2 A/l. Then Z = Spec A" /IA", so by Gabber's
theorem HZ,(Z,Z|z) = HZ,(Spec A", T|spec an). But

Hgt(SpeC B, I|Spec B) =0

Hgt(Spec Ah? I|SpecAh) = l'_m>
B

since all Z|spec g are injective.

This, finally, completes the proof of proper base change! O
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Corollary: cohomological dimension of morphisms

Let f : X — Y be proper. If all (geometric) fibers of f have
dimension < d, then for all torsion étale sheaves F we have
R"f.F =0 for n > 2d.
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Corollary: cohomological dimension of morphisms

Let f : X — Y be proper. If all (geometric) fibers of f have
dimension < d, then for all torsion étale sheaves F we have
R"f.F =0 for n > 2d. If further Y has characteristic p and F is
p>°-torsion, R"f.F =0 for n > d.
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Corollary: cohomological dimension of morphisms

Corollary

Let f : X — Y be proper. If all (geometric) fibers of f have
dimension < d, then for all torsion étale sheaves F we have
R"f.F =0 for n > 2d. If further Y has characteristic p and F is
p>°-torsion, R"f.F =0 for n > d.

Proof.
By proper base change, for all geometric points y we have

| A

(R'"6.F)y = H"(Xy, Fy).

We are then done by results on cohomological dimension. O
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Corollary: invariance under base field extension

Corollary

Let f : X — Spec k be a proper variety over separably closed k,
and K separably closed extension of k. For any torsion étale sheaf
F on X we have an isomorphism

Hgt(XK"FK) = Hgt(X7~F)7

where Xy is the base change of X and Fy the corresponding
pullback.
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Corollary: invariance under base field extension

Corollary

Let f : X — Spec k be a proper variety over separably closed k,
and K separably closed extension of k. For any torsion étale sheaf
F on X we have an isomorphism

Hgt(XK"FK) = Hgt(XwF)v

where Xy is the base change of X and Fy the corresponding
pullback.

By proper base change, these coincide with the stalks of R"f,F at
geometric points corresponding to k, K. Since k is separably
closed, both are just global sections. O
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Corollary: cohomology with compact support

Recall: for an open immersion j : U < X, let ji be the extension
by zero functor Sh(Ug:) — Sh(Xet).

Definition

For an étale sheaf F on U, we define cohomology with compact
support as H?, (U, F) = HZ, (X, jiF) for any inclusion

ét,c ét,c
Jj: U< X into a proper scheme.
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Corollary: cohomology with compact support

Recall: for an open immersion j : U < X, let ji be the extension
by zero functor Sh(Ug:) — Sh(Xet).

Definition

For an étale sheaf F on U, we define cohomology with compact
support as H?, (U, F) = HZ, (X, jiF) for any inclusion

ét,c ét,c
Jj: U< X into a proper scheme.

More generally:

Definition

Let 7 : U — S be compactifiable, meaning there exists an open
immersion j : U — X into a proper 7 : X — S. Define higher
direct image with compact support as R!m.F = R"T,jiF.
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Corollary: cohomology with compact support

Recall: for an open immersion j : U < X, let ji be the extension
by zero functor Sh(Ug:) — Sh(Xet).

Definition

For an étale sheaf F on U, we define cohomology with compact
support as H?, (U, F) = HZ, (X, jiF) for any inclusion

ét,c ét,c
Jj: U< X into a proper scheme.

More generally:
Let 7 : U — S be compactifiable, meaning there exists an open

immersion j : U — X into a proper 7 : X — S. Define higher
direct image with compact support as R!m.F = R"T,jiF.

The cohomology sheaves Rl m.F are independent of the
compactification j : U — X.

”
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Corollary: cohomology with compact support

Proposition
The cohomology sheaves R!m,.F are independent of the
compactification j : U — X.

Proof.
Letm: X - S5,@: X — Sbeproperandj: U — X,j/: U— X
open immersions.
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Corollary: cohomology with compact support

Proposition
The cohomology sheaves R!m,.F are independent of the
compactification j : U — X.

Proof.

Letm: X - S5,@: X — Sbeproperandj: U — X,j/: U— X
open immersions. Replacing X’ by the closure of U of X xg X',

assume j = g o j' for an S-morphism g: X' =+ X, so7m™ =Tog.
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Corollary: cohomology with compact support

Proposition
The cohomology sheaves R!m,.F are independent of the
compactification j : U — X.

Proof.

Letm: X - S5,@: X — Sbeproperandj: U — X,j/: U— X
open immersions. Replacing X’ by the closure of U of X xg X',

assume j = g o j' for an S-morphism g: X' =+ X, so7m™ =Tog.

We have the spectral sequence

(RP7.)(RIg) i F) = (RPTI,) (il F).
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Corollary: cohomology with compact support

The cohomology sheaves R!m,.F are independent of the
compactification j : U — X.

Proof.

Letm: X - S5,@: X — Sbeproperandj: U — X,j/: U— X
open immersions. Replacing X’ by the closure of U of X xg X',

assume j = g o j' for an S-morphism g: X' =+ X, so7m™ =Tog.

We have the spectral sequence

(RP7.)(RIg) i F) = (RPTI,) (il F).

By proper base change, (R9g;)(j{F) can be computed on fibers.
g« is an isomorphism over U, and on other fibers j/F vanishes, so
(R9g)(jiF) = jiF for g =0 and vanishes for g > 0.
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Corollary: cohomology with compact support

The cohomology sheaves R!m,.F are independent of the
compactification j : U — X.

Proof.

Letm: X - S5,@: X — Sbeproperandj: U — X,j/: U— X
open immersions. Replacing X’ by the closure of U of X xg X',

assume j = g o j' for an S-morphism g: X' =+ X, so7m™ =Tog.

We have the spectral sequence

(RP7.)(RIg) i F) = (RPTI,) (il F).

By proper base change, (R9g;)(j{F) can be computed on fibers.
g« is an isomorphism over U, and on other fibers j/F vanishes, so
(R9g)(jiF) = jiF for g =0 and vanishes for g > 0.

Hence we get (RPT.)(iF) = (RPT,) (i F). O
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Failure for non-torsion sheaves

The proper base change theorem does not hold in general if F is
not a torsion sheaf.
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Failure for non-torsion sheaves

The proper base change theorem does not hold in general if F is
not a torsion sheaf.

Let f : X — Y be a proper morphism such that:
@ Y is a smooth curve over an algebraically closed field k,

@ X is a smooth surface over k,
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Failure for non-torsion sheaves

The proper base change theorem does not hold in general if F is
not a torsion sheaf.

Let f : X — Y be a proper morphism such that:

@ Y is a smooth curve over an algebraically closed field k,
@ X is a smooth surface over k,

@ f is generically smooth,
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Failure for non-torsion sheaves

The proper base change theorem does not hold in general if F is
not a torsion sheaf.

Let f : X — Y be a proper morphism such that:
@ Y is a smooth curve over an algebraically closed field k,
@ X is a smooth surface over k,
@ f is generically smooth,

o All geometric fibers of X are irreducible, and one fiber Xy has
an ordinary double point.
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Failure for non-torsion sheaves

The proper base change theorem does not hold in general if F is
not a torsion sheaf.

Let f : X — Y be a proper morphism such that:
@ Y is a smooth curve over an algebraically closed field k,
@ X is a smooth surface over k,
@ f is generically smooth,
o All geometric fibers of X are irreducible, and one fiber Xy has
an ordinary double point.
Then, for the constant sheaf F = Zx, we have
o RY.Zx =0,
o HY(Xp,Zx,) # 0.

Wojtek Wawréw Proper base change Il



Failure for non-torsion sheaves

Let i : x — X be the inclusion of the generic point. Under our
assumptions, we have an isomorphism Zyx = iy Z.
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Failure for non-torsion sheaves

Let i : x — X be the inclusion of the generic point. Under our
assumptions, we have an isomorphism Zx =2 i,Zy. By Leray's
spectral sequence HY(X, i,Zy) coincides with H'(x,Zy), which
vanishes:
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Failure for non-torsion sheaves

Let i : x — X be the inclusion of the generic point. Under our
assumptions, we have an isomorphism Zx =2 i,Zy. By Leray's
spectral sequence HY(X, i,Zy) coincides with H'(x,Zy), which
vanishes: this relies on the fact this group is torsion and the exact

sequence
0 — HY(x,Zy) 5 HY(x,Zy) — HY(x,(Z/n)x)

for all n.
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Failure for non-torsion sheaves

Let i : x — X be the inclusion of the generic point. Under our
assumptions, we have an isomorphism Zx =2 i,Zy. By Leray's
spectral sequence HY(X, i,Zy) coincides with H'(x,Zy), which
vanishes: this relies on the fact this group is torsion and the exact
sequence

0 — HY(x,Zy) 5 HY(x,Zy) — HY(x,(Z/n)x)
for all n.

On the other hand, Hl(Xo,ZXO) = Z: for the double point Q, the
fiber of i,Zy, at Q is 72, so we have 0 — Ly, — islixy — Zg — 0.
We then have

0 — H%(Xo,Zq) — H' (X0, Zx,) — 0
and so H%(Xy,Zq) = Z # 0.



