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Pullback and cohomology

Let f : X → Y be a morphism. For any étale sheaf F on X we
have the cohomology sheaves Rnf∗F on Y .

Now take another morphism g : Y ′ → Y . Take a diagram

X ′ X

Y ′ Y .

g ′

f ′ f

g

On one hand we have the pullback g ′∗F on X ′. On the other
hand, we can consider the pullback g∗(Rnf∗F) on Y ′. We wish to
compare cohomology of g ′∗F with this last pullback.
For n = 0, we have a map F → g ′∗g

′∗F , and hence
f∗F → f∗g

′
∗g
′∗F . Now note f∗g

′
∗ = g∗f

′
∗ , so we get maps

f∗F → g∗f
′
∗g
′∗F ,

g∗f∗F → f ′∗g
′∗F .
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Review: edge maps in spectral sequences

Theorem (Grothendieck spectral sequence)

Suppose A
G−→ B

F−→ C is a chain of functors between categories.
Under appropriate conditions, for any a ∈ A we have a spectral
sequence

Ep,q
2 = (RpF )(RqG )(a)⇒ Rp+q(FG )(a)

For n ∈ N and (p, q) = (n, 0) we have

(RnF )G (a) = En,0
2 � En,0

∞ ↪→ Rn(FG )(a).

For (p, q) = (0, n) we have

Rn(FG )(a) � E 0,n
∞ ↪→ E 0,n

2 = (RnF )G (a).

These are the edge maps.
In our case of interest these are the maps

Rnf∗ ◦ g ′∗ → Rn(f∗g
′
∗) = Rn(g∗f

′
∗)→ g∗ ◦ Rnf ′∗ .
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Construction of the base change map

X ′ X

Y ′ Y .

g ′

f ′ f

g

We wish to construct a map g∗(Rnf∗F)→ Rnf ′∗(g
′∗F).

By
adjunction, it is enough to construct a map
Rnf∗F → g∗(R

nf ′∗(g
′∗F)). Intuitively, this is a map induced by

Hn(f −1(U),F)→ Hn(f ′−1(U), g ′∗F).
Like before, we have F → g ′∗g

′∗F and hence
Rnf∗F → Rnf∗(g

′
∗g
′∗F). We now use the following map

Rnf∗ ◦ g ′∗ → g∗ ◦ Rnf ′∗ constructed before:
Rnf∗(g

′
∗g
′∗F)→ g∗R

nf ′∗(g
′∗F).
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When is base change an isomorphism?

Suppose X ′ = X ×Y Y ′. It is natural to ask when the morphism

g∗(Rnf∗F)→ Rnf ′∗(g
′∗F)

is an isomorphism.

Theorem

Suppose f : X → Y is a proper morphism and F is a torsion étale
sheaf. Then the base change morphism is an isomorphism.

There are other conditions which imply this isomorphism, e.g. g
being smooth (assuming extra technical conditions.)
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Illustration: topological base change

Suppose we have a Cartesian diagram of topological spaces:

X ′ X

Y ′ Y .

g ′

f ′ f

g

We have to check the isomorphism on stalks: for all y ∈ Y ′ we
want an isomorphism

(g∗(Rnf∗F))y = (Rnf∗F)g(y)
∼= (Rnf ′∗(g

′∗F))y .

Observe that the fibers Xg(y) and X ′y are isomorphic, and the
isomorphism identifies F|Xg(y)

with (g ′∗F)|X ′
y
. It would be enough

to have an isomorphism (Rnf∗F)g(y)
∼= Hn(Xg(y),F|Xg(y)

)—base
change for inclusion of a point.
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Illustration: topological base change

Why should this isomorphism hold? For n = 0, this says
Γ(Xz ,F|Xz ) ∼= (f∗F)z .

We have

(f∗F)z = lim−→
z∈V⊆Y

F(f −1(V )).

In nice cases, we also have

Γ(Xz ,F|Xz ) = lim−→
Xz⊆U⊆X

F(U).

Properness is equivalent to the former being cofinal in the latter,
giving an isomorphism.
You can prove this for higher cohomology too. See Milne’s
Lectures on Étale Cohomology, Section 17.
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Sections on fibers

Lemma

Let (A,m) be a henselian local ring, X → Spec(A) proper, Z the
special fiber. For any (Zariski) sheaf F on X we have
Γ(X ,F) = Γ(Z ,F|Z ).

Proof.

By general topology, enough to show Z intersects any irreducible
subset Y in a nonempty connected set. Replacing X with Y
assume X irreducible, want Z nonempty connected. Nonempty
follows from proper, connected comes from henselian.
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Sections on geometric fibers

Proposition

In the above situation, let iZ : Z → X be the inclusion. For an
étale sheaf F , we have Γ(X ,F) = Γ(Z , i−1

Z F).

Proof.

For surjectivity: for an étale map U → X (étale neighbourhood of
Z ) there is finite X ′ → X which (Zariski)-locally factors through
U. Sections descend by previous proposition + analogue for finite
base changes, and étale descent.

Corollary

f : X → Y proper, y a geometric point of Y . For any étale sheaf
F we have an isomorphism (f∗F)y → Γ(Xy ,Fy ).

Corollary (Base change in degree 0)

Base change map g−1f∗F → f ′∗g
′∗F is an isomorphism.
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′∗F is an isomorphism.
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Passing to higher degrees

Knowing how base change behaves on global sections, we want to
understand its behavior on injective sheaves.

Definition

We say base change holds for proper f : X → Y if for any
g : Y ′ → Y and torsion étale sheaf F on X , base change map
g−1Rnf∗F → Rnf ′∗g

′∗F is an isomorphism for all n.

Proposition

Base change holds for f iff for all injective Z/`-sheaves I on Xet

and g : Y ′ → Y , g ′−1I is f ′∗-acyclic: Rnf ′∗(g
′−1I) = 0.

Proof.

One direction clear. For the converse, use colimits and induction to
go from Z/` to arbitrary torsion. Then use acyclic resolutions
g ′−1I• to compute cohomology and use n = 0 case.
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Standard reductions

Proposition

If base change works for f1 : X → Y and f2 : Y → Z, it works for
f2 ◦ f1.

Proof.

Let I be an injective sheaf of Z/`-modules on X . Then f1∗I is
injective on Y (abstract nonsense + Z/` is a field.) We have a
spectral sequence

Ep,q
2 = Rpf ′2∗R

qf ′1∗g
−1I ⇒ Rp+q(f ′2 ◦ f ′1)∗g

−1I.

Ep,q
2 , q > 0 vanishes since base change works for f1. Ep,0

2 vanishes
since it works for f2 and f1∗I is injective.

Proposition

If f1 is surjective and base change works for f1, f2 ◦ f1, then it works
for f2.
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The case of finite morphisms

Proposition

Let f : X → Y be finite. Then RnF = 0 for all n > 0 and all étale
sheaves F on X .

Proof.

Let X sh = X ×Y Osh
Y ,y . Then (RnF)y = Hn(X sh,F). We have

X sh = SpecA, where A is a finite Osh
Y ,y -algebra. Hence A =

∏
Ai

with Ai strictly henselian.
On S = SpecAi , we have Γ(S ,F) = Fs , which proves Γ(S ,−) is
exact, so higher cohomology vanishes.

Corollary

Base change works for finite morphisms.
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Reduction to P1

Proposition

To prove base change for all proper f : X → Y , it is enough to
show it works for P1

Y → Y .

Proof.

Can assume Y affine. Chow’s lemma:

X X ′ Pn
Y

Y

Hence enough to show for Pn
Y → Y . We have a finite surjective

map (P1
Y )n → Pn

Y . Finally we can reduce to P1 by induction.
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