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(W5) “Functoriality”: if X = Xo x SpecF, for some Xo/k a nr. field, then
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W3: “Functional equation” Ill

Z(X,1/(a%)) = £ *XZ(X, 1),
o Exercise: show that
(_1)r+1

d
H( tq > ::‘:C]idX/ztix

Ajod—
ri i,2d—r

(Hint: x =3_,(=1)"deg P, and [[;a;, = 1)
o Let N = multg2¢|H?. Then

1 if dis even,
+1= ‘
(=N otherwise.



Weil conjectures

(W1) “Rationality”:
Pi(t) ... Pag_a(t)

Z(X,t) = Po(t) ... Pay(t)

(W2) “Integrality”:

Po(t) =1—t, Py(t) =1-¢q%, P()=]J01-ait), a,eqQ

i
(W3) “Functional equation”:
Z(X,1/(q%)) = +£qX/2tx7(X, ).

(Ws4) “Riemann hypothesis”: The numbers a; , are Weil numbers, i.e.
all their conjugates have real absolute value g'/2.

(W5) “Functoriality”: if X = X, x SpecFq for some Xo/R, then
deg Pi = f3i(Xo) := dim H'(Xo(C), C)

1
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What about W4, “Riemann hypothesis”?

o This is harder; according to Goncharov [Gon19], Weil was
inspired by Rankin’s lectures on aut. forms;

o ldea: info about pole of Z = info about local factors P;.

o Weights of coeff. sheaf, monodromy calculations, Lefschetz
pencils - lots of cool technical stuff we don’t have time for.

o Other proofs: improvement in Deligne’s Weil 2; simplified by

Laumon using ¢-adic Fourier transform; rigid cohomology proof
by Kedlaya.
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Yoga of Z <y X &5 U and their associated functors
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Computed étale cohomology of curves, H, (X, Gm) = Pic(X), lots
of nice spectral sequence computations.

Constructible sheaves, Poincaré duality for curves,
cohomological dimension

Big theorems: smooth and proper base change, finiteness
theorem, cohomological purity, Chow ring, cycle classes

Poincaré duality in general, Lefschetz trace formula.
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Trace lemma

See [Mil00, Lemma 27.5] for a somewhat dubious proof:
otherwise, see [Del74, (1.5.3)] for a very sleek but not very informative
proof.
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