The Weil conjectures

Étale cohomology reading seminar 30/07/21

Outline

Statement of Weil conjectures

W1 and W2, "rationality" and "integrality"

W5: "Functoriality

W3: "Functional equation"

Summary of the étale cohomology seminar

Statement of Weil conjectures

∘ X/\mathbb{F}_q smooth projective variety of dim. d; q a power of p.

o X/\mathbb{F}_q smooth projective variety of dim. d; q a power of p.

$$Z(X,t) := \exp\left(\sum_{n>0} N_n(X) \frac{t^n}{n}\right), \qquad N_n(X) := \#X(\mathbb{F}_{q^n})$$

o X/\mathbb{F}_q smooth projective variety of dim. d; q a power of p.

$$Z(X,t) := \exp\left(\sum_{n>0} N_n(X) \frac{t^n}{n}\right), \qquad N_n(X) := \#X(\mathbb{F}_{q^n})$$

• From Martin's intro: $\frac{d}{dt} \log Z(X,t) = \sum N_{n+1}(X)T^n$.

∘ X/\mathbb{F}_q smooth projective variety of dim. d; q a power of p.

$$Z(X,t) := \exp\left(\sum_{n>0} N_n(X) \frac{t^n}{n}\right), \qquad N_n(X) := \#X(\mathbb{F}_{q^n})$$

- From Martin's intro: $\frac{d}{dt} \log Z(X,t) = \sum N_{n+1}(X)T^n$.
- \circ eg. for $X = \mathbb{P}^n_{\mathbb{F}_q}$,

$$Z(X,t) = \frac{1}{(1-t)(1-qt)\dots(1-q^nt)}$$

(W1) "Rationality":

$$Z(X,t) = \frac{P_1(t) \dots P_{2d-1}(t)}{P_0(t) \dots P_{2d}(t)}.$$

(W1) "Rationality":

$$Z(X,t)=\frac{P_1(t)\ldots P_{2d-1}(t)}{P_0(t)\ldots P_{2d}(t)}.$$

(W2) "Integrality":

$$P_0(t) = 1 - t, \ P_{2d}(t) = 1 - q^d t, \ P_r(t) = \prod_i (1 - a_{i,r} t), \qquad a_{i,r} \in \overline{\mathbb{Q}}.$$

(W1) "Rationality":

$$Z(X,t) = \frac{P_1(t) \dots P_{2d-1}(t)}{P_0(t) \dots P_{2d}(t)}.$$

(W2) "Integrality":

$$P_0(t) = 1 - t, \ P_{2d}(t) = 1 - q^d t, \ P_r(t) = \prod_i (1 - a_{i,r} t), \qquad a_{i,r} \in \overline{\mathbb{Q}}.$$

(W3) "Functional equation":

$$Z(X,1/(q^dt)) = \pm q^{d\chi/2}t^{\chi}Z(X,t).$$

(W1) "Rationality":

$$Z(X,t)=\frac{P_1(t)\ldots P_{2d-1}(t)}{P_0(t)\ldots P_{2d}(t)}.$$

(W2) "Integrality":

$$P_0(t) = 1 - t, \ P_{2d}(t) = 1 - q^d t, \ P_r(t) = \prod_i (1 - a_{i,r} t), \qquad a_{i,r} \in \overline{\mathbb{Q}}.$$

(W3) "Functional equation":

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

(W4) "Riemann hypothesis": The numbers $a_{i,r}$ are Weil numbers, i.e. all their conjugates have real absolute value $q^{r/2}$.

(W1) "Rationality":

$$Z(X,t) = \frac{P_1(t) \dots P_{2d-1}(t)}{P_0(t) \dots P_{2d}(t)}.$$

(W2) "Integrality":

$$P_0(t) = 1 - t, \ P_{2d}(t) = 1 - q^d t, \ P_r(t) = \prod_i (1 - a_{i,r} t), \qquad a_{i,r} \in \overline{\mathbb{Q}}.$$

(W3) "Functional equation":

$$Z(X,1/(q^dt)) = \pm q^{d\chi/2}t^{\chi}Z(X,t).$$

- (W4) "Riemann hypothesis": The numbers $a_{i,r}$ are Weil numbers, i.e. all their conjugates have real absolute value $q^{r/2}$.
- (W5) "Functoriality": if $X = X_0 \times \operatorname{Spec} \mathbb{F}_q$ for some X_0/k a nr. field, then

$$\deg P_i = \beta_i(X_0) := \dim H^i(X_0(\mathbb{C}), \mathbb{C})$$

W1 and W2, "rationality" and

"integrality"

∘ Frobenius morphism ϕ : $x \mapsto x^q \in \mathsf{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ on \mathbb{F}_q induces morphism $X \to X$

• Frobenius morphism $\phi \colon x \mapsto x^q \in \mathsf{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ on \mathbb{F}_q induces morphism $X \to X$ (on affines, $\Gamma(\mathscr{O}_X, U) \to \Gamma(\mathscr{O}_X, U)$ + glue).

- Frobenius morphism $\phi \colon x \mapsto x^q \in \mathsf{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ on \mathbb{F}_q induces morphism $X \to X$ (on affines, $\Gamma(\mathscr{O}_X, U) \to \Gamma(\mathscr{O}_X, U)$ + glue).
- Key observation: if $\overline{X} = X \times \operatorname{Spec} \overline{\mathbb{F}}_q$, then $X(\mathbb{F}_q) = \overline{X}^{\phi}$.

- Frobenius morphism $\phi \colon x \mapsto x^q \in \mathsf{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ on \mathbb{F}_q induces morphism $X \to X$ (on affines, $\Gamma(\mathscr{O}_X, U) \to \Gamma(\mathscr{O}_X, U)$ + glue).
- Key observation: if $\overline{X} = X \times \operatorname{Spec} \overline{\mathbb{F}}_q$, then $X(\mathbb{F}_q) = \overline{X}^{\phi}$.
- \circ More generally, $X(\mathbb{F}_{q^n})=\overline{X}^{\phi^n}$ (multiplicity 1 as $d\phi=0$).

- Frobenius morphism $\phi \colon x \mapsto x^q \in \mathsf{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ on \mathbb{F}_q induces morphism $X \to X$ (on affines, $\Gamma(\mathscr{O}_X, U) \to \Gamma(\mathscr{O}_X, U)$ + glue).
- Key observation: if $\overline{X} = X \times \operatorname{Spec} \overline{\mathbb{F}}_q$, then $X(\mathbb{F}_q) = \overline{X}^{\phi}$.
- More generally, $X(\mathbb{F}_{q^n}) = \overline{X}^{\phi^n}$ (multiplicity 1 as $d\phi = 0$).
- By Lefschetz fixed point theorem,

$$\#X(\mathbb{F}_{q^n}) = \sum_{r=0}^{2d} (-1)^r \operatorname{tr}(\phi^n | H^r(X, \mathbb{Q}_{\ell})).$$

/ı

- Frobenius morphism $\phi \colon x \mapsto x^q \in \mathsf{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ on \mathbb{F}_q induces morphism $X \to X$ (on affines, $\Gamma(\mathscr{O}_X, U) \to \Gamma(\mathscr{O}_X, U)$ + glue).
- Key observation: if $\overline{X} = X \times \operatorname{Spec} \overline{\mathbb{F}}_q$, then $X(\mathbb{F}_q) = \overline{X}^{\phi}$.
- More generally, $X(\mathbb{F}_{q^n}) = \overline{X}^{\phi^n}$ (multiplicity 1 as $d\phi = 0$).
- o By Lefschetz fixed point theorem,

$$\#X(\mathbb{F}_{q^n})=\sum_{r=0}^{2d}(-1)^r\operatorname{tr}(\phi^n|H^r(X,\mathbb{Q}_\ell)).$$

• Lemma: Proof
Let $P_r(t) = \det(\operatorname{Id} - \phi t|_{H^r}) = \prod_i (1 - a_{i,r}t)$. Then $\operatorname{tr}(\phi^n) = \sum_i a_{i,r}^n$.

- Frobenius morphism $\phi \colon x \mapsto x^q \in \mathsf{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ on \mathbb{F}_q induces morphism $X \to X$ (on affines, $\Gamma(\mathscr{O}_X, U) \to \Gamma(\mathscr{O}_X, U)$ + glue).
- Key observation: if $\overline{X} = X \times \operatorname{Spec} \overline{\mathbb{F}}_q$, then $X(\mathbb{F}_q) = \overline{X}^{\phi}$.
- More generally, $X(\mathbb{F}_{q^n}) = \overline{X}^{\phi^n}$ (multiplicity 1 as $d\phi = 0$).
- By Lefschetz fixed point theorem,

$$\#X(\mathbb{F}_{q^n})=\sum_{r=0}^{2d}(-1)^r\operatorname{tr}(\phi^n|H^r(X,\mathbb{Q}_\ell)).$$

- Lemma: Proof
 Let $P_r(t) = \det(\operatorname{Id} \phi t|_{H^r}) = \prod_i (1 a_{i,r}t)$. Then $\operatorname{tr}(\phi^n) = \sum_i a_{i,r}^n$.
- o Therefore,

$$log(P_r(t))$$

- Frobenius morphism $\phi \colon x \mapsto x^q \in \mathsf{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ on \mathbb{F}_q induces morphism $X \to X$ (on affines, $\Gamma(\mathscr{O}_X, U) \to \Gamma(\mathscr{O}_X, U)$ + glue).
- \circ Key observation: if $\overline{X} = X \times \operatorname{Spec} \overline{\mathbb{F}}_q$, then $X(\mathbb{F}_q) = \overline{X}^{\phi}$.
- \circ More generally, $X(\mathbb{F}_{q^n}) = \overline{X}^{\phi^n}$ (multiplicity 1 as $d\phi = 0$).
- By Lefschetz fixed point theorem,

$$\#X(\mathbb{F}_{q^n}) = \sum_{r=0}^{2d} (-1)^r \operatorname{tr}(\phi^n | H^r(X, \mathbb{Q}_{\ell})).$$

o Lemma: Proof

Let
$$P_r(t) = \det(\operatorname{Id} - \phi t|_{H^r}) = \prod_i (1 - a_{i,r}t)$$
. Then $\operatorname{tr}(\phi^n) = \sum_i a_{i,r}^n$.

o Therefore,

$$\log(P_r(t)) = \sum_i \log(1 - a_{i,r}t)$$

- Frobenius morphism $\phi \colon x \mapsto x^q \in \mathsf{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ on \mathbb{F}_q induces morphism $X \to X$ (on affines, $\Gamma(\mathscr{O}_X, U) \to \Gamma(\mathscr{O}_X, U)$ + glue).
- Key observation: if $\overline{X} = X \times \operatorname{Spec} \overline{\mathbb{F}}_q$, then $X(\mathbb{F}_q) = \overline{X}^{\phi}$.
- \circ More generally, $X(\mathbb{F}_{q^n}) = \overline{X}^{\phi^n}$ (multiplicity 1 as $d\phi = 0$).
- o By Lefschetz fixed point theorem,

$$\#X(\mathbb{F}_{q^n})=\sum_{r=0}^{2d}(-1)^r\operatorname{tr}(\phi^n|H^r(X,\mathbb{Q}_\ell)).$$

- Lemma: Proof
 Let $P_r(t) = \det(\operatorname{Id} \phi t|_{H^r}) = \prod_i (1 a_{i,r}t)$. Then $\operatorname{tr}(\phi^n) = \sum_i a_{i,r}^n$.
- o Therefore,

$$\log(P_r(t)) = \sum_{i} \log(1 - a_{i,r}t) \stackrel{(*)}{=} - \sum_{i} \sum_{n>0} a_{i,r}^n \frac{t^n}{n}$$

- Frobenius morphism $\phi \colon x \mapsto x^q \in \mathsf{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ on \mathbb{F}_q induces morphism $X \to X$ (on affines, $\Gamma(\mathscr{O}_X, U) \to \Gamma(\mathscr{O}_X, U)$ + glue).
- Key observation: if $\overline{X} = X \times \operatorname{Spec} \overline{\mathbb{F}}_q$, then $X(\mathbb{F}_q) = \overline{X}^{\phi}$.
- More generally, $X(\mathbb{F}_{q^n}) = \overline{X}^{\phi^n}$ (multiplicity 1 as $d\phi = 0$).
- o By Lefschetz fixed point theorem,

$$\#X(\mathbb{F}_{q^n})=\sum_{r=0}^{2d}(-1)^r\operatorname{tr}(\phi^n|H^r(X,\mathbb{Q}_\ell)).$$

- Lemma: Proof

 Let $P_r(t) = \det(\operatorname{Id} \phi t|_{H^r}) = \prod_i (1 a_{i,r}t)$. Then $\operatorname{tr}(\phi^n) = \sum_i a_{i,r}^n$.
- o Therefore,

$$\log(P_r(t)) = \sum_{i} \log(1 - a_{i,r}t) \stackrel{(*)}{=} - \sum_{i} \sum_{n>0} a_{i,r}^n \frac{t^n}{n} \stackrel{\text{lemma}}{=} - \sum_{n>0} \operatorname{tr}(\phi^n) \frac{t^n}{n}$$

$$\circ \log(P_r(t)) = -\sum_{n>0} \operatorname{tr}(\phi^n) \frac{\operatorname{t}^n}{n}$$
 so

$$\circ \log(P_r(t)) = -\sum_{n>0} \operatorname{tr}(\phi^n) \frac{t^n}{n} \operatorname{so}$$

$$Z(t) = \exp \sum_{n>0} N_n \frac{t^n}{n}$$

$$\log(P_r(t)) = -\sum_{n>0} \operatorname{tr}(\phi^n) \frac{t^n}{n} \operatorname{so}$$

$$Z(t) = \exp \sum_{n>0} N_n \frac{t^n}{n}$$

$$\stackrel{\text{LTF}}{=} \exp \sum_{n>0} \sum_{r=0}^{2d} (-1)^r \operatorname{tr}(\phi^n | H^r(X, \mathbb{Q}_\ell)) \frac{t^n}{n}$$

$$\log(P_r(t)) = -\sum_{n>0} \operatorname{tr}(\phi^n) \frac{t^n}{n} \operatorname{so}$$

$$Z(t) = \exp \sum_{n>0} N_n \frac{t^n}{n}$$

$$\stackrel{\text{LTF}}{=} \exp \sum_{n>0} \sum_{r=0}^{2d} (-1)^r \operatorname{tr}(\phi^n | H^r(X, \mathbb{Q}_\ell)) \frac{t^n}{n}$$

$$= \exp \sum_{r=0}^{2d} (-1)^r \sum_{n>0} \operatorname{tr}(\phi^n | H^r(X, \mathbb{Q}_\ell)) \frac{t^n}{n}$$

$$\begin{aligned} \circ & \log(P_r(t)) = -\sum_{n>0} \operatorname{tr}(\phi^n) \frac{t^n}{n} \operatorname{so} \\ Z(t) &= \exp\sum_{n>0} N_n \frac{t^n}{n} \\ &\stackrel{\text{LTF}}{=} \exp\sum_{n>0} \sum_{r=0}^{2d} (-1)^r \operatorname{tr}(\phi^n | H^r(X, \mathbb{Q}_\ell)) \frac{t^n}{n} \\ &= \exp\sum_{r=0}^{2d} (-1)^r \sum_{n>0} \operatorname{tr}(\phi^n | H^r(X, \mathbb{Q}_\ell)) \frac{t^n}{n} \\ &= \exp\sum_{r=0}^{2d} (-1)^{r+1} \log(P_r(t)) \end{aligned}$$

$$\begin{aligned} \circ & \log(P_r(t)) = -\sum_{n>0} \operatorname{tr}(\phi^n) \frac{t^n}{n} \operatorname{so} \\ Z(t) &= \exp \sum_{n>0} N_n \frac{t^n}{n} \\ &\stackrel{\text{LTF}}{=} \exp \sum_{n>0} \sum_{r=0}^{2d} (-1)^r \operatorname{tr}(\phi^n | H^r(X, \mathbb{Q}_\ell)) \frac{t^n}{n} \\ &= \exp \sum_{r=0}^{2d} (-1)^r \sum_{n>0} \operatorname{tr}(\phi^n | H^r(X, \mathbb{Q}_\ell)) \frac{t^n}{n} \\ &= \exp \sum_{r=0}^{2d} (-1)^{r+1} \log(P_r(t)) \\ &= \prod_{r=0}^{2d} \det(\operatorname{Id} -\phi t | H^r)^{(-1)^{r+1}}. \end{aligned}$$

$$\begin{aligned} \circ & \log(P_r(t)) = -\sum_{n>0} \operatorname{tr}(\phi^n) \frac{t^n}{n} \operatorname{so} \\ Z(t) &= \exp \sum_{n>0} N_n \frac{t^n}{n} \\ &\stackrel{\text{LTF}}{=} \exp \sum_{n>0} \sum_{r=0}^{2d} (-1)^r \operatorname{tr}(\phi^n | H^r(X, \mathbb{Q}_\ell)) \frac{t^n}{n} \\ &= \exp \sum_{r=0}^{2d} (-1)^r \sum_{n>0} \operatorname{tr}(\phi^n | H^r(X, \mathbb{Q}_\ell)) \frac{t^n}{n} \\ &= \exp \sum_{r=0}^{2d} (-1)^{r+1} \log(P_r(t)) \\ &= \prod_{r=0}^{2d} \det(\operatorname{Id} - \phi t | H^r)^{(-1)^{r+1}}. \end{aligned}$$

• We have proved (W1)! Link.

• What is
$$P_r(t) = \det(\operatorname{Id} -\phi t | H^r)$$
?

∘ What is $P_r(t) = \det(\operatorname{Id} - \phi t | H^r)$? A priori, $P_r \in \mathbb{Q}_{\ell}[t]$.

- ∘ What is $P_r(t) = \det(\operatorname{Id} \phi t | H^r)$? A priori, $P_r \in \mathbb{Q}_{\ell}[t]$.
- ∘ e.g. $\phi|H^0$ is the identity, so $P_0(t) = \det(\operatorname{Id} \operatorname{Id} t) = 1 t \in \mathbb{Z}[t]$.

- ∘ What is $P_r(t) = \det(\operatorname{Id} \phi t | H^r)$? A priori, $P_r \in \mathbb{Q}_{\ell}[t]$.
- ∘ e.g. $\phi|H^0$ is the identity, so $P_0(t) = \det(\operatorname{Id} t) = 1 t \in \mathbb{Z}[t]$.
- o Similarly, $\phi|H^{2d}$ acts like mult. by q^d , so $P_{2d}(t)=1-q^dt\in\mathbb{Z}[t].$

- ∘ What is $P_r(t) = \det(\operatorname{Id} \phi t | H^r)$? A priori, $P_r \in \mathbb{Q}_{\ell}[t]$.
- ∘ e.g. $\phi|H^0$ is the identity, so $P_0(t) = \det(\operatorname{Id} t) = 1 t \in \mathbb{Z}[t]$.
- \circ Similarly, $\phi|H^{2d}$ acts like mult. by q^d , so $P_{2d}(t)=1-q^dt\in\mathbb{Z}[t]$.
- ∘ Claim: $Z(t) \in \mathbb{Q}(t)$.

- ∘ What is $P_r(t) = \det(\operatorname{Id} \phi t | H^r)$? A priori, $P_r \in \mathbb{Q}_{\ell}[t]$.
- ∘ e.g. $\phi|H^0$ is the identity, so $P_0(t) = \det(\operatorname{Id} \operatorname{Id} t) = 1 t \in \mathbb{Z}[t]$.
- \circ Similarly, $\phi|H^{2d}$ acts like mult. by q^d , so $P_{2d}(t)=1-q^dt\in\mathbb{Z}[t]$.
- Claim: $Z(t) \in \mathbb{Q}(t)$. Pf. $Z(t) \in \mathbb{Q}[\![t]\!] \cap \mathbb{Q}_{\ell}(t)$, so a lemma of Fatou implies $Z(t) \in \mathbb{Q}(t)$.

W2: "Integrality"

- ∘ What is $P_r(t) = \det(\operatorname{Id} \phi t | H^r)$? A priori, $P_r \in \mathbb{Q}_{\ell}[t]$.
- ∘ e.g. $\phi|H^0$ is the identity, so $P_0(t) = \det(\operatorname{Id} \operatorname{Id} t) = 1 t \in \mathbb{Z}[t]$.
- \circ Similarly, $\phi|H^{2d}$ acts like mult. by q^d , so $P_{2d}(t)=1-q^dt\in\mathbb{Z}[t]$.
- Claim: $Z(t) \in \mathbb{Q}(t)$. Pf. $Z(t) \in \mathbb{Q}[\![t]\!] \cap \mathbb{Q}_\ell(t)$, so a lemma of Fatou implies $Z(t) \in \mathbb{Q}(t)$.
- (Purely algebraic, "Hankel determinants", exercise in Milne/Bourbaki.)

W2: "Integrality"

- What is $P_r(t) = \det(\operatorname{Id} \phi t | H^r)$? A priori, $P_r \in \mathbb{Q}_{\ell}[t]$.
- ∘ e.g. $\phi|H^0$ is the identity, so $P_0(t) = \det(\operatorname{Id} \operatorname{Id} t) = 1 t \in \mathbb{Z}[t]$.
- \circ Similarly, $\phi|H^{2d}$ acts like mult. by q^d , so $P_{2d}(t)=1-q^dt\in\mathbb{Z}[t]$.
- Claim: $Z(t) \in \mathbb{Q}(t)$. Pf. $Z(t) \in \mathbb{Q}[\![t]\!] \cap \mathbb{Q}_{\ell}(t)$, so a lemma of Fatou implies $Z(t) \in \mathbb{Q}(t)$.
- (Purely algebraic, "Hankel determinants", exercise in Milne/Bourbaki.)
- ∘ **Cor.** $a_{i,r} \in \overline{\mathbb{Q}}$, and we have proved (W2):

$$P_0(t) = 1 - t, \ P_{2d}(t) = 1 - q^d t, \ P_r(t) = \prod_i (1 - a_{i,r} t), \quad a_{i,r} \in \overline{\mathbb{Q}}.$$

Assume $X = X_0 \times \operatorname{Spec} \mathbb{F}_q$, X_0/k .

Assume $X = X_0 \times \operatorname{Spec} \mathbb{F}_q$, X_0/k . Wts: $\operatorname{deg} P_r = \operatorname{dim} H^r(X_0(\mathbb{C}); \mathbb{C})$.

Assume $X=X_0\times \operatorname{Spec} \mathbb{F}_q$, X_0/k . Wts: $\deg P_r=\dim H^r(X_0(\mathbb{C});\mathbb{C})$.

 $\circ \ \, \mathsf{Note:} \ \, \mathsf{deg} \, P_r(t) = \mathsf{deg} \, \mathsf{det} \big(1 - \phi t \big| H^r_{\mathsf{\acute{e}t}}(\overline{X}; \mathbb{Q}_\ell) \big) = \mathsf{dim} \, H^r_{\mathsf{\acute{e}t}}(\overline{X}; \mathbb{Q}_\ell).$

Assume $X = X_0 \times \operatorname{Spec} \mathbb{F}_q$, X_0/k . Wts: $\operatorname{deg} P_r = \operatorname{dim} H^r(X_0(\mathbb{C}); \mathbb{C})$.

- $\circ \ \, \mathsf{Note:} \ \, \mathsf{deg} \, P_r(t) = \mathsf{deg} \, \mathsf{det} \big(1 \phi t | H^r_{\mathrm{\acute{e}t}}(\overline{X}; \mathbb{Q}_\ell) \big) = \mathsf{dim} \, H^r_{\mathrm{\acute{e}t}}(\overline{X}; \mathbb{Q}_\ell).$
- $\circ \ \, \text{Claim: } \dim H^r_{\text{\'et}}(\overline{X};\mathbb{Q}_\ell) \cong \dim H^r(X_0(\mathbb{C});\mathbb{C}).$

```
Assume X = X_0 \times \operatorname{Spec} \mathbb{F}_q, X_0/k. Wts: \operatorname{deg} P_r = \operatorname{dim} H^r(X_0(\mathbb{C}); \mathbb{C}).
```

- $\circ \ \, \mathsf{Note:} \ \, \mathsf{deg} \, P_r(t) = \mathsf{deg} \, \mathsf{det} \big(1 \phi t | H^r_{\mathsf{\acute{e}t}}(\overline{X}; \mathbb{Q}_\ell) \big) = \mathsf{dim} \, H^r_{\mathsf{\acute{e}t}}(\overline{X}; \mathbb{Q}_\ell).$
- $\circ \ \, \text{Claim: } \dim H^r_{\text{\'et}}(\overline{X};\mathbb{Q}_\ell) \cong \dim H^r(X_0(\mathbb{C});\mathbb{C}). \ \, \text{Pf:}$

```
Assume X = X_0 \times \operatorname{Spec} \mathbb{F}_q, X_0/k. Wts: \operatorname{deg} P_r = \operatorname{dim} H^r(X_0(\mathbb{C}); \mathbb{C}).
```

- $\circ \text{ Note: } \deg P_r(t) = \deg \det \left(1 \phi t | H^r_{\text{\'et}}(\overline{X}; \mathbb{Q}_\ell) \right) = \dim H^r_{\text{\'et}}(\overline{X}; \mathbb{Q}_\ell).$
- $\circ \ \, \text{Claim: } \dim H^r_{\text{\'et}}(\overline{X};\mathbb{Q}_\ell) \cong \dim H^r(X_0(\mathbb{C});\mathbb{C}). \ \, \text{Pf:}$
 - $\diamond \mathbb{F}_q \cong \mathscr{O}_k/\mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}_{k,\mathfrak{p}}}$ has generic fibre $X_\eta := X_0 \times \operatorname{Spec}(\mathbb{Q}_p \otimes k)$ and special fibre X_0 .

Assume $X = X_0 \times \operatorname{Spec} \mathbb{F}_q$, X_0/k . Wts: $\operatorname{deg} P_r = \operatorname{dim} H^r(X_0(\mathbb{C}); \mathbb{C})$.

- $\circ \text{ Note: } \deg P_r(t) = \deg \det \left(1 \phi t | H^r_{\text{\'et}}(\overline{X}; \mathbb{Q}_\ell)\right) = \dim H^r_{\text{\'et}}(\overline{X}; \mathbb{Q}_\ell).$
- ∘ Claim: dim $H^r_{\text{\'et}}(\overline{X}; \mathbb{Q}_\ell) \cong \dim H^r(X_0(\mathbb{C}); \mathbb{C})$. Pf:
 - $\diamond \mathbb{F}_q \cong \mathscr{O}_k/\mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}}_{k,\mathfrak{p}}$ has generic fibre $X_\eta := X_0 \times \operatorname{Spec}(\mathbb{Q}_p \otimes k)$ and special fibre X_0 .
 - \diamond By cor. of smooth base change, ($\overline{\eta}$ geom. pt. over η)

$$H_{\mathrm{\acute{e}t}}^{\bullet}(\overline{X};\mathbb{Q}_{\ell})\cong H_{\mathrm{\acute{e}t}}^{\bullet}(X_{\overline{\eta}};\mathbb{Q}_{\ell}).$$

Assume $X = X_0 \times \operatorname{Spec} \mathbb{F}_q$, X_0/k . Wts: $\operatorname{deg} P_r = \operatorname{dim} H^r(X_0(\mathbb{C}); \mathbb{C})$.

- $\circ \text{ Note: deg } P_r(t) = \deg \det \left(1 \phi t | H^r_{\text{\'et}}(\overline{X}; \mathbb{Q}_\ell) \right) = \dim H^r_{\text{\'et}}(\overline{X}; \mathbb{Q}_\ell).$
- $\circ \ \, \text{Claim: dim}\, H^r_{\text{\'et}}(\overline{X};\mathbb{Q}_\ell) \cong \dim H^r(X_0(\mathbb{C});\mathbb{C}). \ \, \text{Pf:}$
 - $\diamond \mathbb{F}_q \cong \mathscr{O}_k/\mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}}_{k,\mathfrak{p}}$ has generic fibre $X_\eta := X_0 \times \operatorname{Spec}(\mathbb{Q}_p \otimes k)$ and special fibre X_0 .
 - \diamond By cor. of smooth base change, ($\overline{\eta}$ geom. pt. over η)

$$H_{\mathrm{cute{e}t}}^{ullet}(\overline{X}; \mathbb{Q}_{\ell}) \cong H_{\mathrm{cute{e}t}}^{ullet}(X_{\overline{\eta}}; \mathbb{Q}_{\ell}).$$

$$H_{\text{\'et}}^{\bullet}(X_{\overline{\eta}}; \mathbb{Q}_{\ell}) \stackrel{(1)}{\cong} H_{\text{\'et}}^{\bullet}(X_{\overline{\eta}}(\mathbb{C}); \mathbb{Q}_{\ell}) \stackrel{(2)}{\cong} H^{\bullet}(X_{0}(\mathbb{C}); \mathbb{Q}_{\ell})$$

Assume
$$X = X_0 \times \operatorname{Spec} \mathbb{F}_q$$
, X_0/k . Wts: $\operatorname{deg} P_r = \operatorname{dim} H^r(X_0(\mathbb{C}); \mathbb{C})$.

- $\circ \ \, \mathsf{Note:} \ \, \mathsf{deg} \, P_r(t) = \mathsf{deg} \, \mathsf{det} \big(1 \phi t \big| H^r_{\mathrm{\acute{e}t}}(\overline{X}; \mathbb{Q}_\ell) \big) = \mathsf{dim} \, H^r_{\mathrm{\acute{e}t}}(\overline{X}; \mathbb{Q}_\ell).$
- ∘ Claim: dim $H^r_{\text{\'et}}(\overline{X}; \mathbb{Q}_\ell) \cong \dim H^r(X_0(\mathbb{C}); \mathbb{C})$. Pf:
 - $\diamond \mathbb{F}_q \cong \mathscr{O}_k/\mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}}_{k,\mathfrak{p}}$ has generic fibre $X_\eta := X_0 \times \operatorname{Spec}(\mathbb{Q}_p \otimes k)$ and special fibre X_0 .
 - \diamond By cor. of smooth base change, ($\overline{\eta}$ geom. pt. over η)

$$H_{\mathrm{\acute{e}t}}^{\bullet}(\overline{X};\mathbb{Q}_{\ell})\cong H_{\mathrm{\acute{e}t}}^{\bullet}(X_{\overline{\eta}};\mathbb{Q}_{\ell}).$$

$$H_{\text{\'et}}^{\bullet}(X_{\overline{\eta}}; \mathbb{Q}_{\ell}) \stackrel{(1)}{\cong} H_{\text{\'et}}^{\bullet}(X_{\overline{\eta}}(\mathbb{C}); \mathbb{Q}_{\ell}) \stackrel{(2)}{\cong} H^{\bullet}(X_{0}(\mathbb{C}); \mathbb{Q}_{\ell})$$

(1) Cor of SBC: if $K_1 \hookrightarrow K_2$ separably closed, then cohom. equal.

Assume
$$X = X_0 \times \operatorname{Spec} \mathbb{F}_q$$
, X_0/k . Wts: $\operatorname{deg} P_r = \operatorname{dim} H^r(X_0(\mathbb{C}); \mathbb{C})$.

- Note: $\deg P_r(t) = \deg \det (1 \phi t | H_{\operatorname{\acute{e}t}}^r(\overline{X}; \mathbb{Q}_\ell)) = \dim H_{\operatorname{\acute{e}t}}^r(\overline{X}; \mathbb{Q}_\ell).$
- ∘ Claim: dim $H^r_{\text{\'et}}(\overline{X}; \mathbb{Q}_\ell) \cong \dim H^r(X_0(\mathbb{C}); \mathbb{C})$. Pf:
 - $\diamond \mathbb{F}_q \cong \mathscr{O}_k/\mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}}_{k,\mathfrak{p}}$ has generic fibre $X_\eta := X_0 \times \operatorname{Spec}(\mathbb{Q}_p \otimes k)$ and special fibre X_0 .
 - \diamond By cor. of smooth base change, ($\overline{\eta}$ geom. pt. over η)

$$H_{\mathrm{\acute{e}t}}^{\bullet}(\overline{X};\mathbb{Q}_{\ell})\cong H_{\mathrm{\acute{e}t}}^{\bullet}(X_{\overline{\eta}};\mathbb{Q}_{\ell}).$$

$$H_{\text{\'et}}^{\bullet}(X_{\overline{\eta}}; \mathbb{Q}_{\ell}) \stackrel{(1)}{\cong} H_{\text{\'et}}^{\bullet}(X_{\overline{\eta}}(\mathbb{C}); \mathbb{Q}_{\ell}) \stackrel{(2)}{\cong} H^{\bullet}(X_{0}(\mathbb{C}); \mathbb{Q}_{\ell})$$

- (1) Cor of SBC: if $K_1 \hookrightarrow K_2$ separably closed, then cohom. equal.
- (2) $X_0(\mathbb{C})\cong X_{\overline{\eta}}(\mathbb{C})$ + comparison cplx \leftrightarrow étale from Mike's talk

Assume
$$X = X_0 \times \operatorname{Spec} \mathbb{F}_q$$
, X_0/k . Wts: $\operatorname{deg} P_r = \operatorname{dim} H^r(X_0(\mathbb{C}); \mathbb{C})$.

- $\circ \ \, \mathsf{Note:} \ \, \mathsf{deg} \, P_r(t) = \mathsf{deg} \, \mathsf{det} \big(1 \phi t \big| H^r_{\mathrm{\acute{e}t}}(\overline{X}; \mathbb{Q}_\ell) \big) = \mathsf{dim} \, H^r_{\mathrm{\acute{e}t}}(\overline{X}; \mathbb{Q}_\ell).$
- $\circ \ \, \text{Claim: } \dim H^r_{\text{\'et}}(\overline{X};\mathbb{Q}_\ell) \cong \dim H^r(X_0(\mathbb{C});\mathbb{C}). \ \, \text{Pf:}$
 - $\diamond \mathbb{F}_q \cong \mathscr{O}_k/\mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}_{k,\mathfrak{p}}}$ has generic fibre $X_\eta := X_0 \times \operatorname{Spec}(\mathbb{Q}_p \otimes k)$ and special fibre X_0 .
 - \diamond By cor. of smooth base change, ($\overline{\eta}$ geom. pt. over η)

$$H_{\mathrm{cute{e}t}}^{ullet}(\overline{X}; \mathbb{Q}_{\ell}) \cong H_{\mathrm{cute{e}t}}^{ullet}(X_{\overline{\eta}}; \mathbb{Q}_{\ell}).$$

$$H_{\text{\'et}}^{\bullet}(X_{\overline{\eta}}; \mathbb{Q}_{\ell}) \stackrel{(1)}{\cong} H_{\text{\'et}}^{\bullet}(X_{\overline{\eta}}(\mathbb{C}); \mathbb{Q}_{\ell}) \stackrel{(2)}{\cong} H^{\bullet}(X_{0}(\mathbb{C}); \mathbb{Q}_{\ell})$$

- (1) Cor of SBC: if $K_1 \hookrightarrow K_2$ separably closed, then cohom. equal.
- (2) $X_0(\mathbb{C}) \cong X_{\overline{\eta}}(\mathbb{C})$ + comparison cplx \leftrightarrow étale from Mike's talk
- \diamond By Lefschetz principle, since we are in characteristic 0, changing coefficients to $\mathbb C$ doesn't alter dimension.

Assume
$$X = X_0 \times \operatorname{Spec} \mathbb{F}_q$$
, X_0/k . Wts: $\operatorname{deg} P_r = \operatorname{dim} H^r(X_0(\mathbb{C}); \mathbb{C})$.

- $\circ \ \, \mathsf{Note:} \ \, \mathsf{deg} \, P_r(t) = \mathsf{deg} \, \mathsf{det} \big(1 \phi t \big| H^r_{\mathrm{\acute{e}t}}(\overline{X}; \mathbb{Q}_\ell) \big) = \mathsf{dim} \, H^r_{\mathrm{\acute{e}t}}(\overline{X}; \mathbb{Q}_\ell).$
- $\circ \ \, \text{Claim: } \dim H^r_{\text{\'et}}(\overline{X};\mathbb{Q}_\ell) \cong \dim H^r(X_0(\mathbb{C});\mathbb{C}). \ \, \text{Pf:}$
 - $\diamond \mathbb{F}_q \cong \mathscr{O}_k/\mathfrak{p}$ for some \mathfrak{p} over p, and $\widehat{\mathscr{O}_{k,\mathfrak{p}}}$ has generic fibre $X_\eta := X_0 \times \operatorname{Spec}(\mathbb{Q}_p \otimes k)$ and special fibre X_0 .
 - \diamond By cor. of smooth base change, ($\overline{\eta}$ geom. pt. over η)

$$H_{\mathrm{\acute{e}t}}^{\bullet}(\overline{X};\mathbb{Q}_{\ell})\cong H_{\mathrm{\acute{e}t}}^{\bullet}(X_{\overline{\eta}};\mathbb{Q}_{\ell}).$$

$$H_{\text{\'et}}^{\bullet}(X_{\overline{\eta}}; \mathbb{Q}_{\ell}) \stackrel{(1)}{\cong} H_{\text{\'et}}^{\bullet}(X_{\overline{\eta}}(\mathbb{C}); \mathbb{Q}_{\ell}) \stackrel{(2)}{\cong} H^{\bullet}(X_{0}(\mathbb{C}); \mathbb{Q}_{\ell})$$

- (1) Cor of SBC: if $K_1 \hookrightarrow K_2$ separably closed, then cohom. equal.
- (2) $X_0(\mathbb{C}) \cong X_{\overline{\eta}}(\mathbb{C})$ + comparison cplx \leftrightarrow étale from Mike's talk
 - ⋄ By Lefschetz principle, since we are in characteristic 0, changing coefficients to C doesn't alter dimension.

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

¹[Mil80] p.289

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

o Poincaré duality: perfect pairing

$$H^{r}(\overline{X}; \mathbb{Q}_{\ell}) \times H^{2d-r}(\overline{X}; \mathbb{Q}_{\ell}) \to H^{2d}(\overline{X}; \mathbb{Q}_{\ell}(d)) \xrightarrow{\eta} \mathbb{Q}_{\ell},$$

¹[Mil80] p.289

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

Poincaré duality: perfect pairing

$$H^{r}(\overline{X}; \mathbb{Q}_{\ell}) \times H^{2d-r}(\overline{X}; \mathbb{Q}_{\ell}) \to H^{2d}(\overline{X}; \mathbb{Q}_{\ell}(d)) \xrightarrow{\eta} \mathbb{Q}_{\ell},$$

with composition $(x, y) \mapsto \eta(x \smile y)$.

• Note: $1/\lambda_{i,r}$ is a root of $P_r(t) = \det(\operatorname{Id} -\phi t|H^r)$, iff $\lambda_{i,r}$ is an eigenvalue of ϕ .

¹[Mil80] p.289

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

o Poincaré duality: perfect pairing

$$H^{r}(\overline{X}; \mathbb{Q}_{\ell}) \times H^{2d-r}(\overline{X}; \mathbb{Q}_{\ell}) \to H^{2d}(\overline{X}; \mathbb{Q}_{\ell}(d)) \xrightarrow{\eta} \mathbb{Q}_{\ell},$$

- Note: $1/\lambda_{i,r}$ is a root of $P_r(t) = \det(\operatorname{Id} -\phi t|H^r)$, iff $\lambda_{i,r}$ is an eigenvalue of ϕ .
- $\circ \text{ Ex.}^{1} \phi_{*} \phi^{*} = q^{d};$

¹[Mil80] p.289

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

o Poincaré duality: perfect pairing

$$H^{r}(\overline{X}; \mathbb{Q}_{\ell}) \times H^{2d-r}(\overline{X}; \mathbb{Q}_{\ell}) \to H^{2d}(\overline{X}; \mathbb{Q}_{\ell}(d)) \xrightarrow{\eta} \mathbb{Q}_{\ell},$$

- Note: $1/\lambda_{i,r}$ is a root of $P_r(t) = \det(\operatorname{Id} -\phi t|H^r)$, iff $\lambda_{i,r}$ is an eigenvalue of ϕ .
- o Ex.1 $\phi_*\phi^*=q^d$; so if $\phi_r^*x=\lambda_{i,r}x$ and $\phi_{2d-r}^*y=\lambda_{i,2d-r}y$, then

$$\lambda_{i,r}\lambda_{i,2d-r}\eta(x\smile y)$$

¹[Mil80] p.289

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

o Poincaré duality: perfect pairing

$$H^{r}(\overline{X}; \mathbb{Q}_{\ell}) \times H^{2d-r}(\overline{X}; \mathbb{Q}_{\ell}) \to H^{2d}(\overline{X}; \mathbb{Q}_{\ell}(d)) \xrightarrow{\eta} \mathbb{Q}_{\ell},$$

- Note: $1/\lambda_{i,r}$ is a root of $P_r(t) = \det(\operatorname{Id} -\phi t|H^r)$, iff $\lambda_{i,r}$ is an eigenvalue of ϕ .
- o Ex.1 $\phi_*\phi^*=q^d$; so if $\phi_r^*x=\lambda_{i,r}x$ and $\phi_{2d-r}^*y=\lambda_{i,2d-r}y$, then

$$\lambda_{i,r}\lambda_{i,2d-r}\eta(x\smile y)=\eta(\phi_r^*x\smile\phi_{2d-r}^*y)$$

¹[Mil80] p.289

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

o Poincaré duality: perfect pairing

$$H^{r}(\overline{X}; \mathbb{Q}_{\ell}) \times H^{2d-r}(\overline{X}; \mathbb{Q}_{\ell}) \to H^{2d}(\overline{X}; \mathbb{Q}_{\ell}(d)) \xrightarrow{\eta} \mathbb{Q}_{\ell},$$

- Note: $1/\lambda_{i,r}$ is a root of $P_r(t) = \det(\operatorname{Id} -\phi t|H^r)$, iff $\lambda_{i,r}$ is an eigenvalue of ϕ .
- Ex.¹ $\phi_*\phi^*=q^d$; so if $\phi_r^*x=\lambda_{i,r}x$ and $\phi_{2d-r}^*y=\lambda_{i,2d-r}y$, then

$$\lambda_{i,r}\lambda_{i,2d-r}\eta(X\smile Y)=\eta(\phi_r^*X\smile\phi_{2d-r}^*Y)=\eta(X\smile\phi_{*,2d-r}\phi_{2d-r}^*Y)$$

¹[Mil80] p.289

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

o Poincaré duality: perfect pairing

$$H^{r}(\overline{X}; \mathbb{Q}_{\ell}) \times H^{2d-r}(\overline{X}; \mathbb{Q}_{\ell}) \to H^{2d}(\overline{X}; \mathbb{Q}_{\ell}(d)) \xrightarrow{\eta} \mathbb{Q}_{\ell},$$

- Note: $1/\lambda_{i,r}$ is a root of $P_r(t) = \det(\operatorname{Id} -\phi t|H^r)$, iff $\lambda_{i,r}$ is an eigenvalue of ϕ .
- Ex.¹ $\phi_*\phi^*=q^d$; so if $\phi_r^*x=\lambda_{i,r}x$ and $\phi_{2d-r}^*y=\lambda_{i,2d-r}y$, then

$$\lambda_{i,r}\lambda_{i,2d-r}\eta(x\smile y)=\eta(\phi_r^*x\smile\phi_{2d-r}^*y)=\eta(x\smile\phi_{*,2d-r}\phi_{2d-r}^*y)$$
$$=q^d\eta(x\smile y).$$

 $⁼ q \eta(x \circ y)$

¹[Mil80] p.289

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

o Poincaré duality: perfect pairing

$$H^{r}(\overline{X}; \mathbb{Q}_{\ell}) \times H^{2d-r}(\overline{X}; \mathbb{Q}_{\ell}) \to H^{2d}(\overline{X}; \mathbb{Q}_{\ell}(d)) \xrightarrow{\eta} \mathbb{Q}_{\ell},$$

- Note: $1/\lambda_{i,r}$ is a root of $P_r(t) = \det(\operatorname{Id} -\phi t|H^r)$, iff $\lambda_{i,r}$ is an eigenvalue of ϕ .
- Ex.¹ $\phi_*\phi^*=q^d$; so if $\phi_r^*x=\lambda_{i,r}x$ and $\phi_{2d-r}^*y=\lambda_{i,2d-r}y$, then

$$\lambda_{i,r}\lambda_{i,2d-r}\eta(x\smile y) = \eta(\phi_r^*x\smile\phi_{2d-r}^*y) = \eta(x\smile\phi_{*,2d-r}\phi_{2d-r}^*y)$$
$$= q^d\eta(x\smile y), \text{ so } \lambda_{i,2d-r} = q^d/\lambda_{i,r}$$

¹[Mil80] p.289

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

o Poincaré duality: perfect pairing

$$H^{r}(\overline{X}; \mathbb{Q}_{\ell}) \times H^{2d-r}(\overline{X}; \mathbb{Q}_{\ell}) \to H^{2d}(\overline{X}; \mathbb{Q}_{\ell}(d)) \xrightarrow{\eta} \mathbb{Q}_{\ell},$$

with composition $(x,y) \mapsto \eta(x \smile y)$.

- Note: $1/\lambda_{i,r}$ is a root of $P_r(t) = \det(\operatorname{Id} -\phi t|H^r)$, iff $\lambda_{i,r}$ is an eigenvalue of ϕ .
- Ex.¹ $\phi_*\phi^*=q^d$; so if $\phi_r^*x=\lambda_{i,r}x$ and $\phi_{2d-r}^*y=\lambda_{i,2d-r}y$, then

$$\lambda_{i,r}\lambda_{i,2d-r}\eta(x\smile y) = \eta(\phi_r^*x\smile\phi_{2d-r}^*y) = \eta(x\smile\phi_{*,2d-r}\phi_{2d-r}^*y)$$

 $=q^d\eta(x\smile y)$, so $\lambda_{i,2d-r}=q^d/\lambda_{i,r}$ (up to conjugation, since η is defined over \mathbb{Q}_ℓ).

¹[Mil80] p.289

• For each r, if $a_{i,r} := 1/\lambda_{i,r}$, then $P_r(t) = \prod_i (1 - a_{i,r}t)$ as before,

• For each r, if $a_{i,r} := 1/\lambda_{i,r}$, then $P_r(t) = \prod_i (1 - a_{i,r}t)$ as before, and

$$\{a_{i,r}: 1 \le i \le \deg P_{i,r}\} = \left\{\frac{q^d}{a_{i,2d-r}}: 1 \le i \le \deg P_r = \deg P_{2d-r}\right\}.$$

g

• For each r, if $a_{i,r} := 1/\lambda_{i,r}$, then $P_r(t) = \prod_i (1 - a_{i,r}t)$ as before, and

$$\{a_{i,r}: 1 \leq i \leq \deg P_{i,r}\} = \bigg\{\frac{q^d}{a_{i,2d-r}}: 1 \leq i \leq \deg P_r = \deg P_{2d-r}\bigg\}.$$

• Relabelling, $a_{i,r} = q^d/a_{i,2d-r}$ for all i, then

• For each r, if $a_{i,r} := 1/\lambda_{i,r}$, then $P_r(t) = \prod_i (1 - a_{i,r}t)$ as before, and

$$\{a_{i,r}: 1 \le i \le \deg P_{i,r}\} = \left\{\frac{q^d}{a_{i,2d-r}}: 1 \le i \le \deg P_r = \deg P_{2d-r}\right\}.$$

 \circ Relabelling, $a_{i,r} = q^d/a_{i,2d-r}$ for all i, then

$$(1-ta_{i,r})=\left(1-\frac{tq^a}{a_{i,2d-r}}\right)$$

• For each r, if $a_{i,r} := 1/\lambda_{i,r}$, then $P_r(t) = \prod_i (1 - a_{i,r}t)$ as before, and

$$\{a_{i,r}: 1 \le i \le \deg P_{i,r}\} = \left\{\frac{q^d}{a_{i,2d-r}}: 1 \le i \le \deg P_r = \deg P_{2d-r}\right\}.$$

 \circ Relabelling, $a_{i,r} = q^d/a_{i,2d-r}$ for all i, then

$$(1 - ta_{i,r}) = \left(1 - \frac{tq^d}{a_{i,2d-r}}\right) = -\frac{tq^d}{a_{i,2d-r}}\left(1 - \frac{a_{i,2d-r}}{tq^d}\right)$$

• For each r, if $a_{i,r} := 1/\lambda_{i,r}$, then $P_r(t) = \prod_i (1 - a_{i,r}t)$ as before, and

$$\{a_{i,r}: 1 \le i \le \deg P_{i,r}\} = \left\{\frac{q^d}{a_{i,2d-r}}: 1 \le i \le \deg P_r = \deg P_{2d-r}\right\}.$$

 \circ Relabelling, $a_{i,r} = q^d/a_{i,2d-r}$ for all i, then

$$(1 - ta_{i,r}) = \left(1 - \frac{tq^d}{a_{i,2d-r}}\right) = -\frac{tq^d}{a_{i,2d-r}}\left(1 - \frac{a_{i,2d-r}}{tq^d}\right)$$

Now

• For each r, if $a_{i,r} := 1/\lambda_{i,r}$, then $P_r(t) = \prod_i (1 - a_{i,r}t)$ as before, and

$${a_{i,r}: 1 \le i \le \deg P_{i,r}} = \left\{ \frac{q^d}{a_{i,2d-r}}: 1 \le i \le \deg P_r = \deg P_{2d-r} \right\}.$$

• Relabelling, $a_{i,r} = q^d/a_{i,2d-r}$ for all i, then

$$(1 - ta_{i,r}) = \left(1 - \frac{tq^d}{a_{i,2d-r}}\right) = -\frac{tq^d}{a_{i,2d-r}}\left(1 - \frac{a_{i,2d-r}}{tq^d}\right)$$

Now

$$Z(t) = \prod_{r,i} (1 - ta_{i,r})^{(-1)^{i+1}} = \prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \left(1 - \frac{a_{i,2d-r}}{tq^d} \right) \right)^{(-1)^{i+1}}$$

$$= \prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \right)^{(-1)^{i+1}} \prod_{r,i} \left(1 - \frac{a_{i,2d-r}}{tq^d} \right)^{(-1)^{i+1}}$$

$$= \prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \right)^{(-1)^{i+1}} \cdot Z(1/(q^dt)).$$

• For each r, if $a_{i,r} \coloneqq 1/\lambda_{i,r}$, then $P_r(t) = \prod_i (1 - a_{i,r}t)$ as before, and

$$\{a_{i,r}: 1 \le i \le \deg P_{i,r}\} = \left\{\frac{q^d}{a_{i,2d-r}}: 1 \le i \le \deg P_r = \deg P_{2d-r}\right\}.$$

 \circ Relabelling, $a_{i,r} = q^d/a_{i,2d-r}$ for all i, then

$$(1 - ta_{i,r}) = \left(1 - \frac{tq^d}{a_{i,2d-r}}\right) = -\frac{tq^d}{a_{i,2d-r}}\left(1 - \frac{a_{i,2d-r}}{tq^d}\right)$$

Now

$$Z(t) = \prod_{r,i} (1 - ta_{i,r})^{(-1)^{i+1}} = \prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \left(1 - \frac{a_{i,2d-r}}{tq^d} \right) \right)^{(-1)^{r+1}}$$

• For each r, if $a_{i,r} := 1/\lambda_{i,r}$, then $P_r(t) = \prod_i (1 - a_{i,r}t)$ as before, and

$$\{a_{i,r}: 1 \le i \le \deg P_{i,r}\} = \left\{\frac{q^d}{a_{i,2d-r}}: 1 \le i \le \deg P_r = \deg P_{2d-r}\right\}.$$

 \circ Relabelling, $a_{i,r} = q^d/a_{i,2d-r}$ for all i, then

$$(1 - ta_{i,r}) = \left(1 - \frac{tq^d}{a_{i,2d-r}}\right) = -\frac{tq^d}{a_{i,2d-r}}\left(1 - \frac{a_{i,2d-r}}{tq^d}\right)$$

Now

$$Z(t) = \prod_{r,i} (1 - ta_{i,r})^{(-1)^{i+1}} = \prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \left(1 - \frac{a_{i,2d-r}}{tq^d} \right) \right)^{(-1)^{i+1}}$$
$$= \prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \right)^{(-1)^{i+1}} \prod_{r,i} \left(1 - \frac{a_{i,2d-r}}{tq^d} \right)^{(-1)^{i+1}}$$

 \circ For each r, if $a_{i,r} := 1/\lambda_{i,r}$, then $P_r(t) = \prod_i (1 - a_{i,r}t)$ as before, and

$$\{a_{i,r}: 1 \le i \le \deg P_{i,r}\} = \left\{\frac{q^d}{a_{i,2d-r}}: 1 \le i \le \deg P_r = \deg P_{2d-r}\right\}.$$

 \circ Relabelling, $a_{i,r} = q^d/a_{i,2d-r}$ for all i, then

$$(1 - ta_{i,r}) = \left(1 - \frac{tq^d}{a_{i,2d-r}}\right) = -\frac{tq^d}{a_{i,2d-r}}\left(1 - \frac{a_{i,2d-r}}{tq^d}\right)$$

Now

$$Z(t) = \prod_{r,i} (1 - ta_{i,r})^{(-1)^{i+1}} = \prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \left(1 - \frac{a_{i,2d-r}}{tq^d} \right) \right)^{(-1)^{i+1}}$$

$$= \prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \right)^{(-1)^{i+1}} \prod_{r,i} \left(1 - \frac{a_{i,2d-r}}{tq^d} \right)^{(-1)^{i+1}}$$

$$= \prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \right)^{(-1)^{i+1}} \cdot Z(1/(q^dt)).$$

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

$$Z(X,1/(q^dt)) = \pm q^{d\chi/2}t^{\chi}Z(X,t).$$

o Exercise: show that

$$\prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \right)^{(-1)^{i+1}} = \pm q^{-d\chi/2} t^{-\chi}$$

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

Exercise: show that

$$\prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \right)^{(-1)^{i+1}} = \pm q^{-d\chi/2} t^{-\chi}$$

(Hint:
$$\chi = \sum_r (-1)^r \deg P_r$$
 and $\prod_i a_{i,r} = 1$)

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

Exercise: show that

$$\prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \right)^{(-1)^{i+1}} = \pm q^{-d\chi/2} t^{-\chi}$$

(Hint:
$$\chi = \sum_r (-1)^r \deg P_r$$
 and $\prod_i a_{i,r} = 1$)

 \circ Let $N := \operatorname{mult}_{q^{d/2}} \phi | H^d$.

$$Z(X,1/(q^dt)) = \pm q^{d\chi/2}t^{\chi}Z(X,t).$$

Exercise: show that

$$\prod_{r,i} \left(-\frac{tq^d}{a_{i,2d-r}} \right)^{(-1)^{i+1}} = \pm q^{-d\chi/2} t^{-\chi}$$

(Hint:
$$\chi = \sum_r (-1)^r \deg P_r$$
 and $\prod_i a_{i,r} = 1$)

 \circ Let $N := \operatorname{mult}_{q^{d/2}} \phi | H^d$. Then

$$\pm 1 = \begin{cases} 1 & \text{if } d \text{ is even,} \\ (-1)^N & \text{otherwise.} \end{cases}$$

Weil conjectures

(W1) "Rationality":

$$Z(X,t) = \frac{P_1(t) \dots P_{2d-1}(t)}{P_0(t) \dots P_{2d}(t)}.$$

(W2) "Integrality":

$$P_0(t) = 1 - t$$
, $P_{2d}(t) = 1 - q^d t$, $P_r(t) = \prod_i (1 - a_{i,r} t)$, $a_{i,r} \in \overline{\mathbb{Q}}$.

(W3) "Functional equation":

$$Z(X, 1/(q^d t)) = \pm q^{d\chi/2} t^{\chi} Z(X, t).$$

- (W4) "Riemann hypothesis": The numbers $a_{i,r}$ are Weil numbers, i.e. all their conjugates have real absolute value $q^{r/2}$.
- (W5) "Functoriality": if $X = X_0 \times \operatorname{Spec} \mathbb{F}_q$ for some X_0/k , then

$$\deg P_i = \beta_i(X_0) := \dim H^i(X_0(\mathbb{C}), \mathbb{C})$$

 This is harder; according to Goncharov [Gon19], Weil was inspired by Rankin's lectures on aut. forms;

- This is harder; according to Goncharov [Gon19], Weil was inspired by Rankin's lectures on aut. forms;
- ∘ Idea: info about pole of $Z \Rightarrow$ info about local factors P_r .

- This is harder; according to Goncharov [Gon19], Weil was inspired by Rankin's lectures on aut. forms;
- o Idea: info about pole of $Z \Rightarrow$ info about local factors P_r .
- Weights of coeff. sheaf, monodromy calculations, Lefschetz pencils - lots of cool technical stuff we don't have time for.
- o Other proofs: improvement in Deligne's Weil 2;

- This is harder; according to Goncharov [Gon19], Weil was inspired by Rankin's lectures on aut. forms;
- ∘ Idea: info about pole of $Z \Rightarrow$ info about local factors P_r .
- Weights of coeff. sheaf, monodromy calculations, Lefschetz pencils - lots of cool technical stuff we don't have time for.
- o Other proofs: improvement in Deligne's Weil 2; simplified by Laumon using ℓ -adic Fourier transform;

- This is harder; according to Goncharov [Gon19], Weil was inspired by Rankin's lectures on aut. forms;
- ∘ Idea: info about pole of $Z \Rightarrow$ info about local factors P_r .
- Weights of coeff. sheaf, monodromy calculations, Lefschetz pencils - lots of cool technical stuff we don't have time for.
- Other proofs: improvement in Deligne's Weil 2; simplified by Laumon using ℓ-adic Fourier transform; rigid cohomology proof by Kedlaya.

cohomology seminar

Summary of the étale

o Defined and studied étale morphisms, lots of examples

- o Defined and studied étale morphisms, lots of examples
- $\circ\,$ Defined the étale site and sheaves on it;

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory;

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence,

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points

- Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- $\circ\,$ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- o Defined étale cohomology,

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves,

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- o Computed étale cohomology of curves, $H^1_{\text{\'et}}(X,\mathbb{G}_m)=\operatorname{Pic}(X)$,

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H^1_{\text{\'et}}(X, \mathbb{G}_m) = \text{Pic}(X)$, lots of nice spectral sequence computations.

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H^1_{\text{\'et}}(X, \mathbb{G}_m) = \text{Pic}(X)$, lots of nice spectral sequence computations.
- o Constructible sheaves,

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H^1_{\text{\'et}}(X, \mathbb{G}_m) = \text{Pic}(X)$, lots of nice spectral sequence computations.
- o Constructible sheaves, Poincaré duality for curves,

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H^1_{\text{\'et}}(X, \mathbb{G}_m) = \text{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H^1_{\text{\'et}}(X, \mathbb{G}_m) = \text{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- o Big theorems: smooth and proper base change,

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H^1_{\text{\'et}}(X, \mathbb{G}_m) = \text{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change, finiteness theorem,

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H^1_{\text{\'et}}(X, \mathbb{G}_m) = \text{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change, finiteness theorem, cohomological purity,

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H^1_{\text{\'et}}(X, \mathbb{G}_m) = \text{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change, finiteness theorem, cohomological purity, Chow ring,

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H^1_{\text{\'et}}(X, \mathbb{G}_m) = \text{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change, finiteness theorem, cohomological purity, Chow ring, cycle classes

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H^1_{\text{\'et}}(X, \mathbb{G}_m) = \text{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change, finiteness theorem, cohomological purity, Chow ring, cycle classes
- o Poincaré duality in general,

- o Defined and studied étale morphisms, lots of examples
- Defined the étale site and sheaves on it; étale sheaves on Spec k
 is just Galois theory; Kummer sequence, geometric points
- \circ Yoga of $Z \stackrel{i}{\hookrightarrow} X \stackrel{j}{\longleftrightarrow} U$ and their associated functors
- Defined étale cohomology, studied spectral sequences (Leray, Grothendieck)
- Computed étale cohomology of curves, $H^1_{\text{\'et}}(X, \mathbb{G}_m) = \text{Pic}(X)$, lots of nice spectral sequence computations.
- Constructible sheaves, Poincaré duality for curves, cohomological dimension
- Big theorems: smooth and proper base change, finiteness theorem, cohomological purity, Chow ring, cycle classes
- o Poincaré duality in general, Lefschetz trace formula.

Resources

References

- [Del74] Pierre Deligne. La conjecture de Weil. I. *Inst. Hautes Études Sci. Publ. Math.*, (43):273–307, 1974.
- [Gon19] Evgeny Goncharov. Weil Conjectures Exposition. *arXiv:1807.10812 [math]*, January 2019.
- [Mil80] James S. Milne. *Etale Cohomology (PMS-33)*. Princeton University Press, 1980.
- [Mil00] James S. Milne. Lectures on étale cohomology. 2000.

Trace lemma

See [Mil00, Lemma 27.5] for a somewhat dubious proof; otherwise, see [Del74, (1.5.3)] for a very sleek but not very informative proof.