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Statement of Weil conjectures



Setup

◦ X/Fq smooth projective variety of dim. d; q a power of p.

Z(X, t) ..= exp

(∑
n>0

Nn(X)
tn

n

)
, Nn(X) ..= #X(Fqn)

◦ From Martin’s intro: d
dt log Z(X, t) =

∑
Nn+1(X)Tn.

◦ eg. for X = PnFq ,

Z(X, t) = 1
(1− t)(1− qt) . . . (1− qnt)
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Weil conjectures

(W1) “Rationality”:

Z(X, t) = P1(t) . . .P2d−1(t)
P0(t) . . .P2d(t)

.

(W2) “Integrality”:

P0(t) = 1− t, P2d(t) = 1− qdt, Pr(t) =
∏
i

(1− ai,rt), ai,r ∈ Q.

(W3) “Functional equation”:

Z(X, 1/(qdt)) = ±qdχ/2tχZ(X, t).

(W4) “Riemann hypothesis”: The numbers ai,r are Weil numbers, i.e.
all their conjugates have real absolute value qr/2.

(W5) “Functoriality”: if X = X0 × SpecFq for some X0/k a nr. field, then

deg Pi = βi(X0) ..= dimHi(X0(C),C)
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W1 and W2, “rationality” and
“integrality”



Rewriting the zeta function I

◦ Frobenius morphism φ : x 7→ xq ∈ Gal(Fq/Fq) on Fq induces
morphism X → X

(on affines, Γ(OX,U)→ Γ(OX,U) + glue).
◦ Key observation: if X = X × SpecFq, then X(Fq) = Xφ.

◦ More generally, X(Fqn) = Xφ
n

(multiplicity 1 as dφ = 0).
◦ By Lefschetz fixed point theorem,

#X(Fqn) =
2d∑
r=0

(−1)r tr(φn|Hr(X,Q`)).

◦ Lemma: Proof

Let Pr(t) = det(Id−φt|Hr ) =
∏

i(1− ai,rt). Then tr(φn) =
∑

i ani,r .
◦ Therefore,

log(Pr(t)) =
∑
i

log
(
1− ai,rt

) (∗)
= −

∑
i

∑
n>0

ani,r
tn

n
lemma
= −

∑
n>0

tr(φn)
tn

n

4
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Rewriting the zeta function II

◦ log(Pr(t)) = −
∑

n>0 tr(φ
n) t

n

n so

Z(t) = exp
∑
n>0

Nn
tn

n

LTF
= exp

∑
n>0

2d∑
r=0

(−1)r tr(φn|Hr(X,Q`))
tn

n

= exp
2d∑
r=0

(−1)r
∑
n>0

tr(φn|Hr(X,Q`))
tn

n

= exp
2d∑
r=0

(−1)r+1 log(Pr(t))

=
2d∏
r=0

det(Id−φt|Hr)(−1)
r+1
.

◦ We have proved (W1)! Link .
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W2: “Integrality”

◦ What is Pr(t) = det(Id−φt|Hr)?

A priori, Pr ∈ Q`[t].
◦ e.g. φ|H0 is the identity, so P0(t) = det(Id− Id t) = 1− t ∈ Z[t].
◦ Similarly, φ|H2d acts like mult. by qd, so P2d(t) = 1− qdt ∈ Z[t].
◦ Claim: Z(t) ∈ Q(t).
Pf. Z(t) ∈ Q[[t]] ∩Q`(t), so a lemma of Fatou implies Z(t) ∈ Q(t).

◦ (Purely algebraic, “Hankel determinants”, exercise in
Milne/Bourbaki.)

◦ Cor. ai,r ∈ Q, and we have proved (W2):

P0(t) = 1− t, P2d(t) = 1− qdt, Pr(t) =
∏
i

(1− ai,rt), ai,r ∈ Q.
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W5: “Functoriality”

Assume X = X0 × SpecFq, X0/k.

Wts: deg Pr = dimHr(X0(C);C).

◦ Note: deg Pr(t) = deg det
(
1− φt|Hrét(X;Q`)

)
= dimHrét(X;Q`).

◦ Claim: dimHrét(X;Q`) ∼= dimHr(X0(C);C). Pf:
� Fq ∼= Ok/p for some p over p, and Ôk,p has generic fibre
Xη ..= X0 × Spec(Qp ⊗ k) and special fibre X0.

� By cor. of smooth base change, (η geom. pt. over η)

H•
ét(X;Q`) ∼= H•

ét(Xη;Q`).

H•
ét(Xη;Q`)

(1)∼= H•
ét(Xη(C);Q`)

(2)∼= H•(X0(C);Q`)

(1) Cor of SBC: if K1 ↪→ K2 separably closed, then cohom. equal.
(2) X0(C) ∼= Xη(C) + comparison cplx↔ étale from Mike’s talk
� By Lefschetz principle, since we are in characteristic 0,
changing coefficients to C doesn’t alter dimension. �

7



W5: “Functoriality”

Assume X = X0 × SpecFq, X0/k. Wts: deg Pr = dimHr(X0(C);C).

◦ Note: deg Pr(t) = deg det
(
1− φt|Hrét(X;Q`)

)
= dimHrét(X;Q`).

◦ Claim: dimHrét(X;Q`) ∼= dimHr(X0(C);C). Pf:
� Fq ∼= Ok/p for some p over p, and Ôk,p has generic fibre
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W3: “Functional equation” I

Z(X, 1/(qdt)) = ±qdχ/2tχZ(X, t).

◦ Poincaré duality: perfect pairing

Hr(X;Q`)× H2d−r(X;Q`)→ H2d(X;Q`(d))
η−→ Q`,

with composition (x, y) 7→ η(x ^ y).
◦ Note: 1/λi,r is a root of Pr(t) = det(Id−φt|Hr), iff λi,r is an
eigenvalue of φ.

◦ Ex.1 φ∗φ
∗ = qd; so if φ∗

r x = λi,rx and φ∗
2d−ry = λi,2d−ry, then

λi,rλi,2d−rη(x ^ y) = η(φ∗
r x ^ φ∗

2d−ry) = η(x ^ φ∗,2d−rφ
∗
2d−ry)

= qdη(x ^ y), so λi,2d−r = qd/λi,r (up to conjugation, since η is
defined over Q`).

1[Mil80] p.289
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W3: “Functional equation” II

◦ For each r, if ai,r ..= 1/λi,r , then Pr(t) =
∏

i(1− ai,rt) as before,

and

{ai,r : 1 ≤ i ≤ deg Pi,r} =
{

qd

ai,2d−r
: 1 ≤ i ≤ deg Pr = deg P2d−r

}
.

◦ Relabelling, ai,r = qd/ai,2d−r for all i, then

(1− tai,r) =
(
1− tqd

ai,2d−r

)
= − tqd

ai,2d−r

(
1−

ai,2d−r
tqd

)

◦ Now

Z(t) =
∏
r,i

(1− tai,r)(−1)
i+1

=
∏
r,i

(
− tqd

ai,2d−r

(
1−

ai,2d−r
tqd

))(−1)i+1

=
∏
r,i

(
− tqd

ai,2d−r

)(−1)i+1∏
r,i

(
1−

ai,2d−r
tqd

)(−1)i+1

=
∏
r,i

(
− tqd

ai,2d−r

)(−1)i+1

· Z(1/(qdt)).
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W3: “Functional equation” III

Z(X, 1/(qdt)) = ±qdχ/2tχZ(X, t).

◦ Exercise: show that

∏
r,i

(
− tqd

ai,2d−r

)(−1)i+1

= ±q−dχ/2t−χ

(Hint: χ =
∑

r(−1)r deg Pr and
∏

i ai,r = 1)
◦ Let N ..= multqd/2φ|Hd. Then

±1 =
{
1 if d is even,
(−1)N otherwise.
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Weil conjectures

(W1) “Rationality”:

Z(X, t) = P1(t) . . .P2d−1(t)
P0(t) . . .P2d(t)

.

(W2) “Integrality”:

P0(t) = 1− t, P2d(t) = 1− qdt, Pr(t) =
∏
i

(1− ai,rt), ai,r ∈ Q.

(W3) “Functional equation”:

Z(X, 1/(qdt)) = ±qdχ/2tχZ(X, t).

(W4) “Riemann hypothesis”: The numbers ai,r are Weil numbers, i.e.
all their conjugates have real absolute value qr/2.

(W5) “Functoriality”: if X = X0 × SpecFq for some X0/k, then

deg Pi = βi(X0) ..= dimHi(X0(C),C)

11



What about W4, “Riemann hypothesis”?

◦ This is harder; according to Goncharov [Gon19], Weil was
inspired by Rankin’s lectures on aut. forms;

◦ Idea: info about pole of Z ⇒ info about local factors Pr .
◦ Weights of coeff. sheaf, monodromy calculations, Lefschetz
pencils - lots of cool technical stuff we don’t have time for.

◦ Other proofs: improvement in Deligne’s Weil 2; simplified by
Laumon using `-adic Fourier transform; rigid cohomology proof
by Kedlaya.
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Summary of the étale
cohomology seminar



Summary

◦ Defined and studied étale morphisms, lots of examples

◦ Defined the étale site and sheaves on it; étale sheaves on Spec k
is just Galois theory; Kummer sequence, geometric points

◦ Yoga of Z i
↪→ X

j
←↩ U and their associated functors

◦ Defined étale cohomology, studied spectral sequences (Leray,
Grothendieck)

◦ Computed étale cohomology of curves, H1ét(X,Gm) = Pic(X), lots
of nice spectral sequence computations.

◦ Constructible sheaves, Poincaré duality for curves,
cohomological dimension

◦ Big theorems: smooth and proper base change, finiteness
theorem, cohomological purity, Chow ring, cycle classes

◦ Poincaré duality in general, Lefschetz trace formula.
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Trace lemma

back See [Mil00, Lemma 27.5] for a somewhat dubious proof;
otherwise, see [Del74, (1.5.3)] for a very sleek but not very informative
proof.
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