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Derived functors

Let A be an abelian category. An object I € A is injective if A — Hom 4 (A, I) is an exact
functor. We say that A has enough injectives if every A € A injects into an injective object of
A. This lets us define injective resolutions A — I°.

If F: A — Bis aleft exact functor between abelian categories, we can define the right derived
functors R™F of F. They satisfy ROF = F, R*F(I) = 0if I is injective and n > 0. They
take short exact sequences 0 — A’ — A — A” — 0in A to long exact sequences

.. — R"F(A) — R"F(A") % R"T1F(A’) - R"F1F(A) — ...

Any category of sheaves on a site has enough injectives.
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Derived functors

Now we can define the right derived functors of any left exact functor from S(X g) into an
abelian category.

o The global sections functor I'( X, —) : S(Xg) —» Ab, F — Z(X). Its right derived
functors are R'T(X, —) = H™(X, —).

e The inclusion functor i : S(Xg) — P(Xg). Its right derived functors are H*(F).

o For a fixed sheaf .%p on X g, the functor % +— Homg (%, %) is left exact, with right
derived functors Extg (o, —).

o For a fixed sheaf .7 on X g, Hom(Fy, F') is the sheaf U — Hom(.%y|U, Z|U). This gives
a left exact functor S(Xg) — S(X ) with right derived functors Ext?(.%o, 7).

¢ For a continuous morphism between sites 7 : X J’E, — X g, the pushforward 7y is left exact.

Its right derived functors are denoted Ry . For a sheaf .# on X’,, the R*74.% are called the

El 9
higher direct images of .7 .

Note: left exactness is not necessary but guarantees ROF = F.
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Spectral sequences: motivation

Fix an abelian category A, say R-mod or S(X ).
A (cohomological) double complex in A is a family {Eg *93 of objects in .A, together with maps

dp : ED? — EPYDY and d, : ED? — BRI

such that (d,)2 = 0, (dy)? = 0, and dy,dy + dpdy = 0.

We will only deal with first quadrant double complexes, i.e. Eg 4 = Q unless p,q = 0.
Examples: resolution of a complex; double complex induced by a filtered complex.

From a double complex E*® we can construct its total complex E* defined by

Ek = @, E*~1 with differential d = dj, + dy. We want to compute the cohomology of the
total complex.

As a first step, we can compute the “vertical” cohomology of the double complex, by
considering only the action of d,, on E**® and forgetting about dj, . Setting

EP? = ker d?>9/im dP9~ 1,

we get another double complex. Applying d,, to it again would have no effect.
The horizontal differential d;, descends to a differential d1 on E7°®, so we can apply it and take
cohomology again. We set

EY? = kerd??/imd) 9.
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Spectral sequences: motivation

Is this all we need to do to calculate H™(E*®)? Not quite.
Special case: if only columns p and p + 1 of E*® are non-zero, then we have computed
H™(E*) up to extension: there is a short exact sequence

0 — E5Y — HPT(E®) — E§+1’q71 — 0.

In general, there is another natural map dy : EY? — EJ +2,9-1.

Take z € E5? and liftitto 2’ € EP9. Then dy (2’) = 0 in EP*"9. This means that for a lift of

@' to " € BB, dp,(x) is in the image of dy, say dp, (z) = dy(y), fory € EFTHI7 dy, (y)

liesin EPT297 1 and dydy, (y) = —dpde(y) = —(dp)%(x) = 0, so dj(y) lies in the kernel
0 Y Yy Y

of d,, and therefore gives an element of E’f+2‘q71. But d1dp(y) = 0, so we get an element of

E§+27q—1.

This map is well-defined and a differential.

It doesn’t stop here, there are more differentials d;-.
Given the pattern we’re seeing, it’s time to make a definition.
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Spectral sequences: definition

A (cohomological, first quadrant) spectral sequence consists of
e objects EX? € Aforallp,q,r =0
o morphisms d,, = dP? : EP? — EPT97 L gith g2 = 0

o isomorphisms ker d29/im d? "9t ~ EPY,

Paq
EO

e —>e— 36— e
e —>e—3>e6e—e
e —>r e —H e —— @
e —S> e —Se— e
e —S>e—Se— e
e —>e—3>e—e
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Spectral sequences: definition

A (cohomological, first quadrant) spectral sequence consists of
e objects EX? € Aforallp,q,r =0

o morphisms d,, = dP? : EP? — EPT97H gith g2 = 0
o isomorphisms ker d2?/im d? "9t » EPY,

L] L] L] L] L] L]
Ei’q L] L] L] L] L] L]
L] L] L] L] L] L]
L] L] L ] L ] L] L]
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Spectral sequences: definition

Fix (p, ¢). Once r is sufficiently large, E'fz_l is computed from the complex

d§3+r,q—r—l dpd
07— EP1 T

Therefore we have canonical isomorphisms E? = EP?, ~ EP?, ~ ... We denote this limit
object by E2Y. Back to our objective of computing the cohomology of the total complex: it

turns out that there is a decreasing filtration on H™ = H"(E*)
H" = FOHn QFlHn o..DF"H" 2Fn+1Hn =0

such that ER" P >~ FPH™/FPYLH™ = gr, H™. Therefore @y ER" P =grH™. We
say that our spectral sequence converges to H™(E®) and denote this E5? = HPTI(E®).

We didn’t quite compute the cohomology of E*, but we came close. If there is an r = 2 such
that EX? has only one non-zero column or row, we really can read off H"(E*®). We say the
spectral sequence collapses at page 7. In most applications, spectral sequences already collapse
at /1 or Fs.
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Spectral sequences: first applications

In our definition of a spectral sequence, we can reverse the roles of d;, and d,. This gives a new
spectral sequence that also converges to the cohomology of the total complex, but (possibly)
with a different filtration. We denote the previous definition by EP4 and the new definition by
EP4_ This observation is already very powerful.

EXAMPLE. the Five Lemma. Assume both rows are exact, all squares commute, and «, 3, 9,
and € are isomorphisms. Then + is an isomorphism.

P G H I J
ol I I |
A B c D B

Consider the diagram as E5?. We take horizontal cohomology to get to EP?. Since the rows

are exact, Efq looks like
0 0 0
0 0 0

In particular, the cohomology of the total complex vanishes in the two degrees corresponding to
Cand H. ES 9 looks similar and the spectral sequence converges there, since there will be no
more morphisms between two non-zero objects.
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Spectral sequences: first applications

Now compute using the other orientation, taking the vertical differentials first. Since o, 3, 9,
and e are all isomorphisms, Ef 9 Jooks like

0 0 ? 0 0

0 0 ? 0 0

and we see that the spectral sequence already converges on this page. We want to show that
both question marks are zero. But they equal those cohomology objects of the total complex
that are zero by the previous calculation. We’re done!

Let’s show that a short exact sequence of chain complex gives a long exact sequence in

cohomology:
0 A2 B 2 CQ 0
r 1 1
0 Ay B1 Cq 0
r 1 1
0 Ao B 0 C’0 0
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Spectral sequences: first applications

Taking horizontal cohomology, we get 0 in every position by exactness and the spectral
sequence converges. Thus the cohomology of the total complex is trivial.
Taking instead vertical cohomology first, Efq looks like

0 — H2(A) 225 H2(B) 25 H2(C) —> 0
0 —— HY(A) -2 HY(B) 2% HY(C) — 0
0 —— HO(A) —2% HO(B) 2% HO(C) —— 0

The next page 57 looks like

0 ker ap ker B2/im ap coker B2 0
0 ker o1 ker 81/im oy coker 31 0
0 ker g ker Bo/im ag coker 8o 0

The diagonal arrows drawn are the only non-zero morphisms on this page or on any subsequent
page. So the spectral sequence will converge on the next page. We know it must converge to
zero in every entry. This can only happen if ker 3;/im o; = 0 and if the diagonal arrows are
isomorphisms. This gives the desired long exact sequence.
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Spectral sequences: first applications

One more example: the Snake lemma. Consider the following diagram, where rows are exact
and squares commute.

0 D E F 0
I |
0 A B c 0

We want to prove the exactness of

0 ker av ker 3 ker y imo im g3 im~y 0.

Taking horizontal cohomology, we see that all entries of Ef 4 are zero and the spectral sequence
has converged. On the other hand, E’f 9 1ooks like

0 ima im 8 im~y 0

0 ker av ker 8 ker y 0.
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Spectral sequences: first applications

Taking horizontal cohomology, we get E59:

0 0

T,

The single question marks converge on this page. Therefore they must equal zero. The double
question marks will converge on the next page, as there will be no more non-zero arrows into or
out of them. They also must be zero on Eg, so the arrow between them is an isomorphism, i.e.
coker(ker 3 — kery) = ker(im o — im ). This proves the Snake lemma.
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Spectral sequences: properties

From now on, we consider only spectral sequences of type EPY je. with dg vertical. We also
abstract slightly: we will let a spectral sequence converge to any family of finitely filtered
objects E™ € Awith FOE™ = E™ and F"t1E™ = 0,ie. EYY ~ gr, EP¥I,

Notice that each EP4 41 is a subquotient of EPY, In particular there are natural quotient maps

Eg’o — E;L’O N — ET}J’O.

Now E0 =5 gr Em = FREN/Fn+1En — FrEN < BN,

The composite Eg’o — E™ is an edge morphism.

E™ naturally surjects onto EO‘" FOE"/F1E™ = E"/FIE”, and EC}’" naturally injects
into E0 '™ which injects into E o 21+ The composite E™ — Eo is the other edge morphism.
EXERCISE. (5 term exact sequence) the following sequence is exact:

d
0— E;’O S E S Eg’l = E;’O - E?

EXAMPLE. The Hochschild-Serre spectral sequence computes the group cohomology of G in
terms of the cohomology of G/H and H: HP(G/H, HI(H, A)) = HPT9(G, A). In this
case, the 5 term exact sequence is the inflation-restriction exact sequence

0 — HY(G/H,A™) > HY (G, A) - H'(H, A%/ - H*(G/H, AT - H?(G, A).
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The Grothendieck spectral sequence

THEOREM (GROTHENDIECK). Let A, 3, and C be abelian categories such that both A and B
have enough injectives. Let there be left exact functors G : A — B and F' : B — C. Call an
object B of B F-acyclic if the derived functors of I vanish on B, i.e. R*F(B) = 0 fori # 0.
Suppose that G’ sends injective objects of A to F'-acyclic objects of B. Then there exists a
convergent (first quadrant, cohomological) spectral sequence, beginning on page 2, for each
Ae A

B3 = (RP)(RT)(A) = RPHI(FG)(A)

PROOF (sketch). For A € A, take in injective resolution A — I'® and apply G to it to get a
cochain complex in . Take an (appropriate) injective resolution to get a first quadrant double
complex. Apply F to the double complex. The cohomology of the total complex of the
resulting double complex is denoted R™ F'(G(I*)), the right hyper-derived functors of F'.

As before, we have two different spectral sequences both converging to (R™ F)(G(I*)).
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The Grothendieck spectral sequence

Starting with the injective resolution of G(I*), we can take vertical cohomology first and

horizontal cohomology second to get
ES? = HP((RIF)(G(I*))) = (RPTIF)(G(I*)).
Reversing that order, we get
E§? = (RPF)HI(G(I*)) = (RPHIF)(G(I*)).
By hypothesis, each G(I?) is F-acyclic, so (RIF)(G(IP)) = 0 for ¢ # 0. Thus 57 consists
of a single row and the spectral sequence collapses, giving
RPF(G(I*)) =~ HP((R°F)G(I*)) = HP(FG(I*)) = RP(FG)(A).
Now the other spectral sequence looks like
E“;q = (RPF)HIY(G(I*)) = RP(FG)(A).

Since H1(G(I*)) = R1G(A), we are done.
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