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Abstract
In this thesis, we study certain questions arising from the recent
theory of real quadratic singular moduli, developed by Darmon
and Vonk. The starting point is two results of Darmon–Pozzi–
Vonk regarding diagonal restrictions of Eisenstein series on the
Hilbert modular group. In the first part, we extend the results
of [DPV21] to ring class characters, or equivalently, to values
of analytic theta cocycles at non-fundamental RM points. The
main contribution is an explicit adelic construction of Hilbert
Eisenstein series transforming with respect to SL2(𝒪) where 𝒪
is a non-maximal order in a real quadratic field.

In the second part, we describe algorithms based on [DPV23]
to compute Gross–Stark units, which are generators of class
fields of real quadratic fields, and Stark–Heegner points, which
are conjecturally algebraic points on elliptic curves. As an appli-
cation, we compute a fair amount of data and point out some
statistical behaviour.

2



Contents
Abstract 2

Introduction 4
Structure of thesis 8
Acknowledgements 8

I Hilbert modular Eisenstein series 9

1 Hilbert Eisenstein series 9
1.1 Notation and preliminaries 9
1.2 Example: A classical Eisenstein series 13
1.3 Adelic Hilbert modular forms 16
1.4 Adelic Eisenstein series 19
1.5 Hilbert modular forms with order level structure 26
1.6 A Λ-adic Eisenstein family 31

2 Intersections of real quadratic geodesics 35
2.1 Preliminaries on indefinite binary quadratic forms 35
2.2 Hecke action on homology 37
2.3 Rigid meromorphic cocycles 41
2.4 Spectral decomposition 45

II Computation of Gross–Stark units and Stark–Heegner points 47

3 The modular algorithm 48
3.1 Notation 48
3.2 Gross-Stark units and Stark–Heegner points 49
3.3 Diagonal restriction derivatives 50

4 From logarithms to invariants 55
4.1 Recovering a Gross–Stark unit from its 𝑝-adic logarithm 55
4.2 Detecting Stark–Heegner points 62
4.3 Statistics of Brumer–Stark units 63

III Appendices 66

A A proof of Meyer’s theorem 66

B Tables of Gross–Stark units 72

Bibliography 78

3



Introduction
A highlight of 19th and 20th century number theory is the theory of Complex Multiplication, or CM
theory, for short. Among other things, this provides an explicit description of class fields of imaginary
quadratic fields by evaluating Klein’s 𝑗-function at imaginary quadratic irrationalities in the complex
upper half plane 𝔥, so-called singular moduli. The 12th of Hilbert’s 23 problems posed at the Interna-
tional Congress of Mathematics in 1900 asks for a similar analytic construction of abelian extensions of
general fields. Beyond the rational numbers and CM fields, little is known, though Stark’s conjectures,
and notably the work of Dasgupta and Kakde [DK23], give one possible resolution over totally real
fields.

Recently, Darmon and Vonk proposed a new approach similar in spirit to CM theory. Building on the
pioneering work of [Dar01], they propose that certain cocycles on the 𝑝-adic upper half plane should
play a role analogous to Klein’s 𝑗-function on the complex upper half plane.

Intersections of modular geodesics

The starting point for CM theory is to consider imaginary quadratic roots in the complex upper half
plane. In the context of real quadratic fields, it is natural to instead consider modular geodesics:

If 𝜏  is a generator of a real quadratic field 𝐹 , there
is a geodesic geo(𝜏) ⊂ 𝔥 connecting 𝜏  and its conju-
gate, 𝜏 ′. The subgroup of SL2(ℤ) preserving geo(𝜏)
is of rank 1, and we fix a generator 𝛾𝜏 . Then the
line segment (𝑧, 𝛾𝜏𝑧) for any 𝑧 ∈ geo(𝜏) defines a
closed loop 𝐶𝜏  in the fundamental domain of SL2(ℤ).
If 𝛾𝜏 ∈ Γ0(𝑝), then 𝐶𝜏  similarly defines a class in
𝐻1(𝑌0(𝑝), ℤ), which can be acted upon by the Hecke
correspondences 𝑇𝑛. Figure 1: The geodesics 𝐶𝜏  in the fundamental

domain of SL2(ℤ) for 𝜏 = ±3+
√
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The duality pairing

𝐻1(𝑋0(𝑝), {0, ∞}; ℤ) × 𝐻1(𝑌0(𝑝), ℤ) → ℤ (0.1)

is compatible with the Hecke action, and we can pair 𝑇𝑛𝐶𝜏  with the cycle 𝐼 = (0, ∞) in
𝐻1(𝑋0(𝑝), {0, ∞}; ℤ). This pairing is simply the topological oriented intersection number between
the two geodesics.

Fix an order 𝒪 ⊂ 𝐹  of discriminant 𝐷, which might be non-maximal. There is a natural bijection
between equivalence classes of 𝜏  modulo SL2(ℤ) of discriminant 𝐷 and the narrow class group Cl+ 𝒪.
If 𝜓 : Cl+ 𝒪 → ℂ is a totally odd ring class character, let Δ𝜓 be the formal combination of modular
geodesics Δ𝜓 = ∑𝐴∈ Cl+ 𝒪 𝜓(𝐴)𝐶𝜏𝐴

.

Theorem 0.1 ([DPV21, Theorem A]) :  Suppose 𝒪 is maximal, and that 𝑝 splits in 𝒪 ⊂ 𝐹 . Then

(constant term) − 2 ∑
∞

𝑛=1
⟨𝐼, 𝑇𝑛Δ𝜓⟩𝑞𝑛 = 𝐸(𝑝)

𝜓 (𝑧, 𝑧), (0.2)

where 𝐸(𝑝)
𝜓 (𝑧1, 𝑧2) is a Hilbert Eisenstein series of weight (1, 1) and level Γ0(𝑝𝒪𝐹 ).

In Theorem 2.16 we prove the corresponding statement when 𝜓 is a ring class character, or equiva-
lently, when 𝒪 is non-maximal. A generalization of Theorem 0.1 in the maximal case to totally real
fields was given by Branchereau [Bra22], and we expect that his methods could be adapted to yield a
proof for non-maximal orders.
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A 𝑝-adic analogue: rigid meromorphic cocycles

When 𝑝 is inert in ℚ(𝜏), the diagonal restriction in Theorem 0.1 vanishes because of the triviality of
𝑀2(SL2(ℤ)), and the geodesic associated to 𝜏  does not give a cycle on 𝑋0(𝑝). A striking programme
initiated by Darmon and his collaborators suggests that one should instead consider intersections on
“𝔥𝑝 × 𝔥”, where 𝔥𝑝 ≔ ℙ1(ℂ𝑝) − ℙ1(ℚ𝑝) is the 𝑝-adic upper half plane. On this we consider 𝒜, the
ring of 𝑝-adic analytic functions on 𝔥𝑝.

Darmon and Vonk’s theory of rigid meromorphic cocycles ([DV21], [DV22a]) proposes that values
of cocycles in 𝐻1(SL2(ℤ[1/𝑝]), 𝒜×/ℂ×

𝑝 ) play a similar role to that of modular units appearing in
CM theory, when evaluated at real quadratic points 𝜏 ∈ 𝔥𝑝. One of these, the winding cocycle 𝐽𝑤 ∈
𝐻1(SL2(ℤ[1/𝑝]), 𝒜×/ℂ×

𝑝 ), can be interpreted as a higher 𝑝-adic winding number with respect to 𝐼 .
It has an explicit expression as an infinite product of elements of ℂ𝑝,

𝐽𝑤[𝜏 ] ≔ 𝐽𝑤(𝛾𝜏)(𝜏) = ∏
(𝑟,𝑠)∈ SL2(ℤ[1/𝑝])⋅(0,∞)

𝑐(𝑟, 𝑠; 𝜉, 𝜏)[𝑟,𝑠]⋅[𝜉,𝛾𝜉] (0.3)

where 𝑐 denotes the modular cross-ratio, 𝜉 is a suitable base point embedding simultaneously into 𝔥
and 𝔥𝑝, and [𝑟, 𝑠] ⋅ [𝜉, 𝛾𝜉] is the oriented intersection number on 𝔥. The construction turns out to be
independent on the choice of 𝜉. The value 𝐽𝑤[𝜏 ] can also be thought of as a type of Massey product
on 𝔥 × 𝔥𝑝, as described in [DV22b].

The following theorem should be thought of as a 𝑝-adic analogue of Theorem 0.1.

Theorem 0.2 ([DPV21, Theorem B]) :  Suppose 𝑝 is inert in 𝒪𝐹 , let 𝜓 be a totally odd unramified
character and fix Δ𝜓 as above. Then

(constant term) − 2 ∑
∞

𝑛=1
log𝑝 Nm(𝑇𝑛𝐽𝑤[Δ𝜓])𝑞𝑛 = 𝑒ord( d

d𝑘
ℰ𝑘 |𝑘=1 (𝑧, 𝑧)), (0.4)

where ℰ𝑘 is the standard 𝑝-adic family of Hilbert Eisenstein series specialising to 𝐸(𝑝)
𝜓 .

The second main result in this thesis is a generalization to non-maximal orders 𝒪. A different general-
ization of the theorem was proved in [DPV23], in which the modularity of a corresponding generating
series with the norms removed is proved. Explicitly, they prove:

Theorem 0.3 ([DPV23, Theorem C]) :  Suppose 𝑝 is inert in the maximal order 𝒪𝐹 ⊂ 𝐹 , let 𝜓 :
Cl+ 𝒪𝐹 → ℂ× be a totally odd character, and let Δ𝜓 be as above. Then there exists a classical modular
form 𝐺𝜓 ∈ 𝑀2(Γ0(𝑝)) with 𝑞-expansion

𝐺𝜓(𝑧) = log𝑝(𝑢𝜓) − ∑
∞

𝑛=1
log𝑝(𝑇𝑛𝐽𝑤[Δ𝜓])𝑞𝑛. (0.5)

Here 𝑢𝜓 denotes a certain Gross–Stark unit, a 𝑝-unit in the narrow Hilbert class field 𝐻  of 𝐹 . This is
proved by an elaborate calculation of a cuspidal 𝑝-adic deformation of the parallel weight 1 Eisenstein
series.

If we believe the analogy between the rigid cocycles 𝐽  and modular units, then we expect the value
of 𝐽  at 𝜏  generating a non-maximal order 𝒪 to be an invariant defined over a suitable ring class
field. In [DPV23, Remark on p. 16], it was suggested that one might use Hilbert Eisenstein series with
Γ1(𝑁𝒪𝐹 )-level structure, where 𝑁  is the conductor of 𝒪, as considered in [DDP11], to generalize
Theorem 0.3 in this direction. Two complications then arise: firstly, the diagonal restriction of these
Eisenstein series has level 𝑀2(Γ0(𝑁𝑝)), which suggests the spectral expansion gives information
about cocycles with additional level structure. Furthermore, even when 𝑝 is inert, the diagonal restric-
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tion does not vanish. To bypass these complications, the authors propose applying a degeneracy map
Tr𝑁𝑝

𝑝 : 𝑀2(Γ0(𝑁𝑝)) → 𝑀2(Γ0(𝑝)). However, this introduces several challenges in understanding the
corresponding 𝑝-adic family of Hilbert modular forms, for which the GL2(ℚ)-degeneracy map has no
obvious natural interpretation.

The main philosophical contribution of this thesis is to suggest an alternative. Instead of the usual
Hilbert Eisenstein series with Γ1(𝑁𝒪𝐹 )-structure, we propose using Hilbert modular forms trans-
forming with respect to SL2(𝒪), which is a congruence subgroup of level 𝑁𝒪𝐹 . We refer to these
as Hilbert modular forms with order level structure. This was motivated by the observation that in the
natural generalization of Theorem 0.1, Theorem 2.16, one naturally finds sums of 𝒪-ideals.

To define Eisenstein series with this unusual order structure, we use a very general construction of
Eisenstein series which goes back to [Jac72], and specialize to the situation of interest. With a view
towards future generalization, we give a bit more generality than necessary, treating Eisenstein series
with a pair of characters instead of one. As an application, we extend some of the theorems above.
The main results in the first half of the thesis are extensions of Theorem 0.1 and Theorem 0.2, which
appear as Theorem 2.16 and Theorem 2.23, respectively.

Extending results about maximal orders to non-maximal orders is not a new invention. For example,
the somewhat recent work of Longo, Martin and Hu [LMH20] extends work of Bertolini and Darmon
about rationality of Stark–Heegner point associated to genus characters of non-maximal orders.
Notably, their approach is also adelic.

Computational aspects

When the modular form 𝐺𝜓 is expanded in terms of a Hecke eigenform basis, the coefficients are
shown to give Gross–Stark units and Stark-Heegner points, or Darmon points, on modular abelian
varieties, conjecturally defined over 𝐻 . We can make the construction in Theorem 0.3 completely
explicit, and hence give an algorithm for computing these invariants numerically. This is done in
Chapter II, the content of which is published in [Dam24]. Much inspiration here comes from [LV22],
where Lauder and Vonk compute 𝑝-adic 𝐿-functions over totally real fields using diagonal restrictions
of classical Hilbert Eisenstein series. The main novelty in our work is a detailed description of how
one might recover invariants such as 𝑢𝜓 from a numerical approximation to log𝑝 𝑢𝜓. A key tool is a
theorem due to C. Meyer, which gives an explicit formula for the 𝑝-valuation of 𝑢𝜓. The proof of this
is difficult to find in the literature, so we give a modern exposition in Appendix A.

Example 0.4 :  Let 𝑝 = 11 and consider 𝐸 : 𝑦2 + 𝑦 = 𝑥3 − 𝑥2 − 10𝑥 − 20, a model for 𝑋0(11). Using
Algorithm 6 we find the points on 𝐸 described in Table 1:

𝐷 𝑋 𝑌 𝑃
21 𝑥2 + 3𝑥 + 4 𝑥2 + 3𝑥 + 4 11𝑥2 − 6𝑥 + 11
24 𝑥2 + 8 𝑥2 + 10𝑥 + 57 11𝑥2 − 14𝑥 + 11
28 𝑥2 + 71

16𝑥 + 23
4 𝑥2 − 101

64 𝑥 + 599
64 11𝑥2 − 6𝑥 + 11

57 𝑥 + 1065
304 𝑥2 + 𝑥 + 1130412905

28094464 11𝑥2 − 3𝑥 + 11
76 𝑥 + 1065

304 𝑥2 + 𝑥 + 1130412905
28094464 11𝑥2 − 3𝑥 + 11

Table 1: Table of Stark–Heegner points on 𝐸 : 𝑦2 + 𝑦 = 𝑥3 − 𝑥2 − 10𝑥 − 20, for 𝐷 < 100.

For each row, the polynomials in columns 𝑋 and 𝑌  are the minimal polynomials of the 𝑥- and 𝑦-
coordinates, respectively, of a Stark–Heegner point on 𝐸 defined over the narrow Hilbert class field
of ℚ(

√
𝐷). This field is generated over ℚ(

√
𝐷) by a root of the polynomial 𝑃  in the final column,
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which is a Gross–Stark unit. For example, for 𝐷 = 24, (2
√

−2, 5 + 4
√

−2) is a Stark–Heegner point
on 𝑋0(11) defined over ℚ(

√
24,

√
−2), which is the splitting field over ℚ(

√
24) of 11𝑥2 − 14𝑥 + 11.

The algorithms are implemented in both magma and sage, and can be found in the repositories https://
github.com/havarddj/drd and https://github.com/havarddj/hilbert-eisenstein respectively.

While our algorithms simultaneously give Gross–Stark units and Stark–Heegner points, it is much
faster to just compute the Gross–Stark unit. The following example shows the extent to which we
pushed the Gross–Stark unit computations:

Example 0.5 :  Let 𝐷 = 8441 = 23 ⋅ 367. Then 𝐹 ≔ ℚ(
√

𝐷) has narrow class number 26, and
combining Algorithm 2 and Algorithm 5 gives the polynomial

343𝑥26 − 328 ⋅ 74700593𝑥25 + 321 ⋅ 413213377697𝑥24

−314 ⋅ 1491793680346193𝑥23 + 311 ⋅ 48103058975883121𝑥22

−38 ⋅ 1176950719953501830𝑥21 + 38 ⋅ 841442767734656470𝑥20

−36 ⋅ 5230173358710191479𝑥19 + 37 ⋅ 1983729129037937219𝑥18

−35 ⋅ 28800297384178354201𝑥17 + 36 ⋅ 13798304822142405250𝑥16

−32 ⋅ 1314012089988186633625𝑥15 + 32 ⋅ 1350085297035065778356𝑥14

−12074610496660929030725𝑥13 + 32 ⋅ 1350085297035065778356𝑥12

−32 ⋅ 1314012089988186633625𝑥11 + 36 ⋅ 13798304822142405250𝑥10

−35 ⋅ 28800297384178354201𝑥9 + 37 ⋅ 1983729129037937219𝑥8

−36 ⋅ 5230173358710191479𝑥7 + 38 ⋅ 841442767734656470𝑥6

−38 ⋅ 1176950719953501830𝑥5 + 311 ⋅ 48103058975883121𝑥4

−314 ⋅ 1491793680346193𝑥3 + 321 ⋅ 413213377697𝑥2

−328 ⋅ 74700593𝑥 + 343.

(0.6)

The roots of this polynomial are 3-units generating the narrow Hilbert class field of 𝐹 , a degree 52
extension of ℚ, and their square roots are Gross–Stark units attached to narrow ideal classes in 𝐹 , as
defined in Section 4.

Future directions

An obvious next step is to attempt to generalize Theorem 0.3 to ring class characters. Conceptually, this
should be quite simple; the deformation theory arguments in [DPV23] are not sensitive to ramification
away from 𝑝, and the main difficulty would be setting up the Hida theory for Hilbert modular forms
with order level structure. We are optimistic that this might work in a manner similar to the unramified
case, given a suitable definition of the full Hecke algebra of level GL2(𝒪).

Another interesting avenue of exploration is that of higher degree totally real fields. Theorem 0.1 was
generalized in [Bra22], and a generalization of the cocycles 𝐽𝑤, 𝐽DR and 𝐽−

𝑓  to SL𝑛 are defined in
ongoing work of Xu and Roset Julià.

Finally, a version of Theorem 0.1 on compact Shimura curves, where the intersections in question are
⟨𝐶𝜏1

, 𝑇𝑛𝐶𝜏2
⟩, is the subject of ongoing work of the author. The modularity of the generating series is

proved in [Ric22], and we compare with the diagonal restriction of a certain Hilbert theta series using
the methods in [Bra22]. Its 𝑝-adic analogue is treated in forthcoming work of Darmon and Vonk.

In hope of finding a common framework for real quadratic singular moduli and CM theory, a poten-
tially interesting line of inquiry involves the so-called fake real quadratic orders introduced by Cohen
(see [Oh14] and [Wan17]). Let 𝐾 be an imaginary quadratic field, and let ℓ = 𝜆𝜆′ be a split prime.
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Then the order 𝒪𝐾[𝜆−1] behaves in several ways like the order in a real quadratic field; in particular,
its unit group has rank 1. It would be interesting to understand whether there are natural analogues of
our results for these orders, and in particular, if there is a natural construction of rigid meromorphic
cocycles in this setting.

Structure of thesis
The thesis is divided into three parts. Chapter I is concerned with the generalization of the results of
[DPV21]: Theorems A, B and C therein correspond to Theorem 2.16, Theorem 2.23 and Theorem 2.25,
respectively. The brunt of the work lies in defining the correct Eisenstein series, done in Section 1,
where the main result is Proposition 1.32.

The second part of the thesis, Chapter II, is a lightly modified version of the paper [Dam24]. Starting
with Section 3, we quote relevant results from [DPV23] and explain how to make them explicit enough
for a computer to understand. The subsequent Section 4 describes how to recover algebraic invariants
from the output of the preceding algorithms.

Chapter III is an appendix which contains an exposition of Meyer’s theorem (Appendix A), and tables
of numerical data computed using the algorithms in part II (Appendix B).

Acknowledgements
There is a great number of people I would like to thank. First and foremost, my advisors James Newton
and Jan Vonk, without whom this thesis would not exist, for generous guidance and mentorship
throughout my degree. The second line of defence: Alan Lauder, Alex Horawa, Bryan Birch, George
Robinson, Jay Swar, Wissam Ghantous, Zach Feng, and the rest of the number theorists in Oxford.
A special thanks to Jackie Lang for kind advice during the COVID pandemic. I am also grateful to
my friends in Oxford and abroad, especially Annina, Estelle, Hans, Lorenz, Jeremy and Zecheng who
were there from the beginning and who made long days in lockdown pass quickly, and to my family.
During the DPhil I was supported by an Aker scholarship, and I would especially like to thank Bjørn
and Hanne at the Aker Scholarship Foundation for all their help.

And last, but not least, Luna, for love and companionship.

This thesis is dedicated to my grandparents, Arild and Berit.

8



Chapter I: Hilbert modular Eisenstein series

1 Hilbert Eisenstein series
In this section, we describe an adelic construction of certain Eisenstein series over real quadratic fields.

1.1 Notation and preliminaries
We first collect some notation and technical results which will be used in the remainder of the thesis.
The casual reader may want to skip this and proceed directly to Section 1.2.

Local fields and adeles

Throughout the thesis, 𝐹  will denote a real quadratic field, although many of the results we quote and
prove extend to totally real fields of arbitrary degree. We usually denote the discriminant Δ𝐹/ℚ by
𝐷0.

Let 𝑣 be a place of 𝐹 . If 𝑣 is an infinite place, written 𝑣 ∣ ∞, we define 𝐹∞ ≔ ℝ ⊗ℚ 𝐹 ≅ ∏𝑣∣∞ 𝐹𝑣,
and fix the usual Lebesgue measure d𝑥 on 𝐹𝑣 ≅ ℝ. This is a Haar measure for the topological group
(𝐹𝑣, +). Our choice of multiplicative Haar measure on 𝐹×

𝑣  is given by d×𝑥 ≔ |𝑥|−1 d𝑥. The function
𝑥 ↦ 𝑒2𝜋𝑖𝑥 defines an additive character 𝜓𝑣 : 𝐹𝑣 → ℂ×.

When 𝑣 is a finite place, we write 𝒪𝐹𝑣
 for the ring of integers of the completion 𝐹𝑣, 𝔭𝑣 ≤ 𝒪𝐹𝑣

 for
the maximal ideal of 𝒪𝐹𝑣

, and we fix a choice of uniformiser 𝜛𝑣 ∈ 𝒪𝐹𝑣
 generating 𝔭𝑣. The size of the

residue field 𝔽𝑣 ≔ 𝒪𝐹𝑣
/𝔭𝑣 is denoted by 𝑞𝑣. We write 𝑣(𝑥) for the valuation of an element 𝑥 ∈ 𝐹𝑣, so

that |𝑥|𝑣 = 𝑞−𝑣(𝑥)
𝑣 .

We say an additive character 𝜓 : 𝐹𝑣 → ℂ× has conductor 𝛿 ∈ ℤ if 𝛿 is the largest integer such that
𝜓(𝜛−𝛿𝒪𝐹𝑣

) = {1}. Given a choice of 𝜓, we normalize the Haar measure d𝑥 on 𝐹𝑣 by

Vol 𝒪𝐹𝑣
≔ ∫

𝒪𝐹𝑣

d𝑥 = 𝑞−𝛿/2
𝑣 , (1.1.1)

and normalize the multiplicative Haar measure on 𝐹×
𝑣  by

d×𝑥 ≔ 𝑞𝑣
𝑞𝑣 − 1

|𝑥|−1
𝑣 d𝑥. (1.1.2)

This gives

Vol× 𝒪×
𝐹𝑣

≔ ∫
𝒪×

𝐹𝑣

d×𝑥 = 𝑞−𝛿/2
𝑣 , (1.1.3)

so in particular Vol× 𝒪×
𝐹𝑣

= 1 when 𝛿 = 0. When 𝑣 lies above a rational prime 𝑝, a standard choice of
additive character 𝜓𝑣 is given by the formula

𝜓𝑣(𝑥) = 𝑒−2𝜋𝑖{Tr𝐹𝑣/ℚ𝑝(𝑥)}, (1.1.4)

where the curly brackets denote the 𝑝-adic “fractional part” sending ∑∞
𝑛=−𝑁 𝑎𝑛𝑝𝑛 to ∑0

𝑛=−𝑁 𝑎𝑛𝑝𝑛.
The sign is chosen so that ∏𝑣 𝜓𝑣(𝑥) = 1 for any 𝑥 ∈ 𝐹 . Then 𝜓𝑣 has conductor 𝛿𝑣 = 𝑣(𝔡), where 𝔡 is
the different ideal of 𝐹 . Note that 𝛿𝑣 = 0 when 𝐹𝑣/ℚ𝑝 is unramified.
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Confluent hypergeometric functions

Here we collect some analytic results which underlie the analytic continuation of the various Eisen-
stein series we consider.

Definition 1.1 :  The confluent hypergeometric function is defined by

Ξ(𝑦; 𝛼, 𝛽; 𝑡) = ∫
ℝ

𝑒−2𝜋𝑖𝑡𝑢

(𝑢 + 𝑖𝑦)𝛼(𝑢 − 𝑖𝑦)𝛽 d𝑢, (1.1.5)

for 𝑦 > 0, 𝑡 ∈ ℝ and ℜ(𝛼 + 𝛽) > 1.

Note that our Ξ is 𝑖𝛼−𝛽𝜉, where 𝜉 is the function appearing in [Miy89].

Proposition 1.2 ([Miy89, Theorem 7.2.5]) :
(i) For any 𝑦 > 0, Ξ has a meromorphic continuation in 𝛼 and 𝛽.

(ii) For fixed 𝑡 ≠ 0, Ξ is holomorphic in (𝛼, 𝛽) ∈ ℂ2.
(iii) When 𝑡 = 0, we have

Ξ(𝑦; 𝛼, 𝛽; 𝑡) = (2𝜋)𝛼+𝛽 Γ(𝛼 + 𝛽 − 1)
Γ(𝛼)Γ(𝛽)

(4𝜋𝑦)1−𝛼−𝛽. (1.1.6)

Consequently, Γ(𝛼 + 𝛽 − 1)−1Ξ(𝑦, 𝛼, 𝛽, 0) is holomorphic in (𝛼, 𝛽) ∈ ℂ2.

We will need the following identities, which may easily be extracted from [Miy89, p.281]:

Proposition 1.3 :
(i) For 𝑡 < 0 and 𝛽 = 0, we have Ξ(𝑦; 𝛼, 0; 𝑡) = 0.

(ii) When 𝑡 > 0 and 𝛽 = 0,

Ξ(𝑦; 𝛼, 0; 𝑡) = (2𝜋)𝛼𝑡𝛼−1 𝑒−2𝜋𝑡𝑦

Γ(𝛼)
. (1.1.7)

Proof :  (i): This follows from noting the explicit expression in [Miy89, Theorem 7.2.5], as the function
𝜔 therein is holomorphic, and Γ(𝛽)−1 = 0 when 𝛽 = 0. To prove (ii), combine the explicit formula for
𝜉 with [Miy89, Lemma 7.2.6]. □

Local and global orders

Fix a real quadratic field 𝐹 . Let 𝒪 ⊂ 𝐹  be an order of conductor 𝑁 , and let 𝒪 ≔ 𝒪 ⊗ ℤ̂. For a rational
prime ℓ dividing 𝑁 , 𝒪ℓ ≔ 𝒪 ⊗ ℤℓ does not split even if ℓ splits in 𝐹 . However, 𝒪ℓ is a local order in the
étale algebra 𝐹ℓ ≔ ℚℓ ⊗ 𝐹 , and we have 𝒪 = ∏′

𝑣∤𝑁
𝒪𝐹𝑣

× ∏ℓ∣𝑁 𝒪ℓ. It is convenient to write |⋅|ℓ for the

function on 𝐹ℓ defined by |(𝛼𝑣)|ℓ ≔ ∏𝑣∣ℓ |𝛼𝑣|𝑣. Similarly, if 𝜌 : 𝔸𝐹 → ℂ× is a character, we denote
by 𝜌ℓ the restriction to 𝐹ℓ. The trace dual of 𝒪ℓ is

𝔡−1
ℓ ≔ {𝑥 ∈ 𝐹ℓ : Tr(𝑥 ⋅ 𝑦) ∈ ℤℓ for all 𝑦 ∈ 𝒪ℓ}. (1.1.8)

This is principal, generated by (
√

𝐷)
−1

, and we denote its inverse by 𝔡ℓ =
√

𝐷𝒪ℓ.

The norm of an 𝒪-ideal 𝔞 is by definition Nm(𝔞) ≔ #(𝒪/𝔞), while the norm of an element 𝑎 is
Nm(𝑎) ≔ 𝑎 ⋅ 𝑎′, where 𝑎′ is the Galois conjugate of 𝑎. With this convention, we have Nm(𝑎𝒪𝐹 ) =
|Nm(𝑎)|, although we note that the equality Nm(𝑎𝒪) = |Nm(𝑎)| does not hold for general orders 𝒪,
unless 𝑎𝒪 is coprime to the conductor of 𝒪:
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Proposition 1.4 ([Cox11] Proposition 7.20) :  The map 𝔞 ↦ 𝔞𝒪𝐹  is a norm-preserving bijection between
integral 𝒪-ideals coprime to 𝑁  and 𝒪𝐹 -ideals coprime to 𝑁 .

Accordingly, the places of 𝐹  not dividing 𝑁  are in natural bijection with the primes of 𝒪 coprime to
𝑁 . The following gives a local-to-global principle for 𝒪-ideals:

Proposition 1.5 ([Voi21, Theorem 9.4.9]) :  Fix a ℚ-vector space 𝑉  and a ℤ-lattice 𝑀 ⊂ 𝑉 . There is a
bijection between ℤ-lattices 𝑁 ⊂ 𝑉  and collections {𝑁ℓ}, 𝑁ℓ ⊂ 𝑉 ⊗ ℚℓ, where ℓ runs over primes of ℚ,
such that 𝑁ℓ = 𝑀ℓ ≔ 𝑀 ⊗ ℤℓ for all but finitely many primes ℓ.

Note that fractional 𝒪-ideals are precisely the rank 2 ℤ-lattices which are isomorphic to 𝒪ℓ for all but
finitely many primes ℓ.

Ring class groups, classically and adelically

The narrow class group Cl+ 𝒪 of an order 𝒪 is the quotient of the group of invertible 𝒪-ideals by the
subgroup consisting of totally positive principal 𝒪-ideals, {𝛼𝒪 : 𝛼 ∈ 𝐹×

≫0}. Since every class in Cl+ 𝒪
can be represented by an integral ideal coprime to 𝑁 , we may identify Cl+ 𝒪 with a quotient of a
suitable ray class group of 𝐹 :

Proposition 1.6 :  The ring class group Cl+ 𝒪 is isomorphic to the group of 𝒪𝐹 -ideals coprime to 𝑁
modulo principal ideals with a totally positive generator congruent to an integer modulo 𝑁 .

Let 𝐹+
∞ be the set of totally positive elements of 𝐹∞ = 𝐹 ⊗ ℝ. The narrow ring class group has the

following adelic description:

Proposition 1.7 :  Let 𝒪 be an order in a real quadratic field 𝐹 . Then

Cl+ 𝒪 ≅ 𝐹× \ 𝔸×
𝐹 /𝒪𝐹+

∞. (1.1.9)

For a more detailed discussion, see [Cox11, §15E].

The inclusion 1 + 𝑁𝒪𝐹 ↪ 𝒪 realises Cl+ 𝒪 as a quotient of the narrow ray class group Cl+𝑁 𝐹  of
modulus 𝑁 . As explained in [LMH20], we can describe this isomorphism on the level of ideals. Recall
that the ray class group Cl+𝑁 𝐹  is generated by 𝒪𝐹 -ideals relatively prime to 𝑁  modulo 𝑃 1

𝑁 ≔ {𝛼𝒪𝐹 :
(𝛼, 𝑁) = 1, 𝛼 ≫ 0, 𝛼 ≡ 1 mod 𝑁}, while Cl+ 𝒪 is generated by the same ideals modulo 𝑃 ℤ

𝑁 ≔
{𝛼𝒪𝐹 : (𝛼, 𝑁) = 1, 𝛼 ≫ 0, 𝛼 ≡ ℤ mod 𝑁}, by [Cox11] Proposition 7.22. Since 𝑃 ℤ

𝑁 = ⊔𝑐∈(ℤ/𝑁ℤ)×

𝑐𝑃 1
𝑁 , one finds:

Proposition 1.8 :  The ring class group Cl+ 𝒪 is naturally a quotient of the ray class group Cl+𝑁 𝐹 ,

Cl+ 𝒪 ≅ Cl+𝑁 𝐹
(ℤ/𝑁ℤ)× . (1.1.10)

In particular, any ring class character 𝜒 : Cl+ 𝒪 → ℂ may be identified with a ray class character trivial
on (ℤ/𝑁ℤ)×, and hence a unitary Hecke character on 𝔸×

𝐹 . This is characterised by the property that
for any place 𝑣 not dividing 𝑁 , we have then 𝜒(𝔭𝑣) = 𝜒(𝜛𝑣).

𝐿-functions

Given a ray class character 𝜒 of conductor 𝔫 ≤ 𝒪𝐹 , define the associated Hecke 𝐿-function
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𝐿(𝑠, 𝜒) ≔ ∑
𝔞⊂𝒪𝐹

(𝔞,𝔫)=1

𝜒(𝔞)
Nm(𝔞)𝑠 , ℜ(𝑠) > 1. (1.1.11)

We say 𝜒 is totally odd if 𝜒(𝑥) = sgn(Nm(𝑥)) for all 𝑥 ∈ 𝐹× satisfying 𝑥 ≡ 1 mod 𝔫.

Proposition 1.9 ([Miy89, Theorem 3.3.1]) :  For a totally odd Hecke character 𝜒 of conductor 𝔫, the
function 𝐿(𝑠, 𝜒) has an Euler product

𝐿(𝑠, 𝜒) = ∏
(𝔭,𝔫)=1

1
1 − 𝜒(𝔭)Nm(𝔭)−𝑠 . (1.1.12)

The completed 𝐿-function

Λ(𝑠, 𝜒) ≔ (Δ𝐹/ℚ Nm(𝔫))
𝑠
2 Γℝ(𝑠 + 1)2𝐿(𝑠, 𝜒), where Γℝ(𝑠) ≔ 𝜋−𝑠

2 Γ(𝑠
2
), (1.1.13)

satisfies the functional equation Λ(𝑠, 𝜒) = 𝜀(𝜒)Λ(1 − 𝑠, 𝜒) for some 𝜀(𝜒) ∈ ℂ with |𝜀(𝜒)| = 1.

This gives a meromorphic continuation of 𝐿(𝑠, 𝜒) to all of ℂ, and if 𝜒 is not the trivial character,
𝐿(𝑠, 𝜒) is holomorphic. Now assume that 𝜒 is a totally odd ring class character, interpreted as a ray
class character of conductor 𝑁𝒪𝐹 . Then

𝜒𝑓(𝑥𝒪𝐹 ) ≔ 𝜒(𝑥) ⋅ sgn(Nm(𝑥)) (1.1.14)

defines a character 𝜒𝑓 : (𝒪𝐹 /𝔫)× → ℂ×, and 𝜀(𝜒) is given by

𝜀(𝜒) = −𝜏(𝜒)
𝑁

, where 𝜏(𝜒) ≔ ∑
𝑥∈(𝒪𝐹/𝑁)×

𝜒𝑓(𝑥)𝑒2𝜋𝑖Tr(𝑥)
𝑁 . (1.1.15)

To relate 𝐿(𝑠, 𝜒) to 𝒪, we use the bijection from Proposition 1.6 to rewrite 𝐿(𝑠, 𝜒) as a sum over 𝒪
-ideals. When 𝜒 is primitive, that is, does not factor through Cl+ 𝒪′ for any order 𝒪′ ⊃ 𝒪, we can
extend it to a sum over elements of 𝒪 not necessarily coprime to 𝑁 , using the following argument
from [Mey57] which goes back to Dedekind, [Ded00, §10].

Lemma 1.10 :  Suppose 𝜒 is a primitive ring class character, and let 𝜀 be a fundamental unit of 𝒪. Then

𝐿(𝑠, 𝜒) = ∑
𝐴∈ Cl+ 𝒪

𝜒(𝐴)𝜁(𝑠, 𝐴), (1.1.16)

where for any fixed ideal 𝒪-ideal 𝔟 such that [𝔟] = 𝐴−1,

𝜁(𝑠, 𝐴) = Nm (𝔟)𝑠

2
∑

𝛾∈𝔟/𝜀

1
|Nm(𝛾)|𝑠

. (1.1.17)

Proof :  Fix an integral ideal 𝔞 ∈ 𝐴. Then 𝔞𝔟 = (𝛾) for some 𝛾 ∈ 𝔟. Note that | Nm(𝛾)| = Nm(𝔞𝔟), and
since 𝛾 is uniquely determined modulo totally positive units, we get a 2-to-1 map between elements
𝛾 ∈ 𝔟/𝜀 coprime to 𝑁  and 𝒪-ideals prime to 𝑁  with class 𝐴, taking signs into account. Let (𝛾, 𝑁)
denote the 𝒪𝐹 -ideal generated by 𝛾 and 𝑁 . We have

∑
𝔞∈𝐴

1
Nm(𝔞)𝑠 = Nm(𝔟)𝑠

2
∑

𝛾∈𝔟/𝜀
(𝛾,𝑁)=𝒪𝐹

1
|Nm(𝛾)|𝑠

, (1.1.18)
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and it remains to show that we can remove the condition (𝛾, 𝑁) = 𝒪𝐹 . Note any element 𝛾 ∈ 𝒪 may be
written 𝛾 = 𝑥 + 𝑁𝛼 for some 𝛼 ∈ 𝒪𝐹 , so the 𝒪𝐹 -ideal (𝛾, 𝑁) = (𝑥, 𝑁) is principal and generated by
the integer gcd(𝑥, 𝑁). With slight abuse of notation, we write (𝛾, 𝑁) = gcd(𝑥, 𝑁) in this case. Now,

𝜁𝑑(𝑠, 𝐴) ≔ ∑
𝛾∈𝔟/𝜀

(𝛾,𝑁)=𝑑

1
|Nm(𝛾)|𝑠

= 𝑑−𝑠 ∑
𝛾′∈𝔟/𝜀

(𝛾′,𝑁)=1

1
|Nm(𝛾′)|𝑠

. (1.1.19)

Note that 𝛾′ naturally runs over elements of the order 𝔟 viewed as an ideal of 𝒪′, the order of conductor
𝑁/𝑑. Let pr : Cl+ 𝒪 → Cl+ 𝒪′ denote the natural projection map. Since 𝜒 is primitive,

∑
pr(𝐴)=𝐴′

𝜒(𝐴) = 0 so ∑
pr(𝐴′)=𝐴

𝜒(𝐴)𝜁𝑑(𝑠, 𝐴) = 0, (1.1.20)

for any fixed 𝐴′ ∈ Cl+ 𝒪′, as the value of 𝜁𝑑(𝑠, 𝐴) depends only on pr(𝐴). It follows that the contri-
bution from terms corresponding to (𝛾, 𝑁) = 𝑑 is 0 unless 𝑑 = 1. □

1.2 Example: A classical Eisenstein series
In this section, we give an illustrative computation of a classical Hilbert modular Eisenstein series with
order level structure. This is independent of the main argument, but serves to indicate that one might
in principle define the 𝑝-adic Eisenstein family without adelic machinery, at the cost of making the
Hecke theory rather more complicated.

Let 𝑗 : GL2(ℝ) × 𝔥 → ℂ be the function

𝑗(𝑔, 𝑧) = det(𝑔)−1
2 (𝑐𝑧 + 𝑑), for 𝑔 = (𝑎

𝑐
𝑏
𝑑) ∈ GL2(ℝ). (1.2.1)

Note that

𝑗(𝑔𝑔′𝑧) = 𝑗(𝑔, 𝑔′𝑧)𝑗(𝑔′, 𝑧), for all 𝑔, 𝑔′ ∈ GL2(ℝ), (1.2.2)

and

𝑗(𝑟(𝜃), 𝑖) = 𝑒𝑖𝜃, for 𝑟(𝜃) = (cos 𝜃
sin 𝜃

− sin 𝜃
cos 𝜃 ) ∈ SO2(ℝ). (1.2.3)

Let 𝐹/ℚ be a totally real field of degree 𝑑 ≔ [𝐹 : ℚ], and let Σ𝐹 ≔ Homℚ(𝐹 , ℝ). For 𝐹∞ ≔ 𝐹 ⊗
ℝ ≅ ∏𝜎∈Σ𝐹

𝐹𝜎, there is a natural embedding GL2(𝐹) → GL2(𝐹∞) ≅ ∏𝜎∈Σ𝐹
GL2(ℝ) given by 𝑔 ↦

(𝜎(𝑔))𝜎, and hence a natural action of GL2(𝐹) on 𝔥Σ
𝐹 ≅ 𝔥𝑑. If 𝑧 = (𝑧𝜎) ∈ 𝔥Σ

𝐹  and 𝑔 ∈ GL2(𝐹), then
we write

𝑔𝑧 ≔ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

= ∏
𝜎∈Σ𝐹

𝜎(𝑎)𝑧𝜎 + 𝜎(𝑏)
𝜎(𝑐)𝑧𝜎 + 𝜎(𝑑)

(1.2.4)

We also use the symbol 𝑗 to denote the function 𝑗 : GL2 (ℝ)Σ𝐹 × 𝔥Σ𝐹 → ℂ defined by

𝑗(𝑔, 𝑧) ≔ 𝑗((𝑔𝜎), (𝑧𝜎)) = ∏
𝜎∈Σ𝐹

det(𝑔𝜎)−1
2 𝑗(𝑔𝜎, 𝑧𝜎). (1.2.5)

A classical Hilbert modular form of weight 𝑘 = (𝑘𝜎) is a holomorphic function

𝑓 : 𝔥Σ𝐹 → ℂ (1.2.6)

which satisfies

(𝑓|𝑘 𝛾)(𝑧) ≔ 𝑗(𝛾, 𝑧)−𝑘𝑓(𝛾𝑧) = 𝑓(𝑧) (1.2.7)
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for all 𝛾 ∈ Γ, where Γ ≤ SL2(𝒪𝐹 ) is some finite index subgroup. If 𝑘𝜎 = 𝑘𝜎′  for all 𝜎, 𝜎′ ∈ Σ𝐹 , we
identify 𝑘 with 𝑘𝜎 and say that 𝑓  has parallel weight 𝑘.

Now let 𝒪 ⊂ 𝐹  be an order of conductor 𝑁  in a real quadratic field 𝐹 . We define an associated Hilbert
Eisenstein series classically by the formula

𝐺𝜒(𝑧, 𝑠) ≔ ∑
𝔞∈ Cl+ 𝒪

𝜒(𝔞)𝐺𝔞(𝑧, 𝑠), where 𝐺𝔞(𝑧, 𝑠) ≔ ∑
′

𝑐,𝑑∈𝔞

Nm(𝔞)𝑘

(𝑐𝑧 + 𝑑)𝑘|𝑐𝑧 + 𝑑|2𝑠 . (1.2.8)

Here the symbol ∑′ means that the sum should be interpreted modulo the diagonal action of 𝒪×
𝐹

given by 𝜀 ⋅ (𝑐, 𝑑) = (𝜀𝑐, 𝜀𝑑), and leave out the term (0, 0). By 𝔞 ∈ Cl+ 𝒪 we mean an implicitly chosen
integral representative 𝔞 for its corresponding class.

Lemma 1.11 :  The series defining 𝐺𝜒(𝑧, 𝑠) converges absolutely for ℜ(𝑠) > 1 − 𝑘
2 , and the function

ℑ(𝑧)𝑠𝐺𝜒(𝑧, 𝑠) is invariant under the weight 𝑘 action of SL2(𝒪) in the variable 𝑧.

This is easily proved using the same argument as for Eisenstein series over ℚ.

Theorem 1.12 :  Fix 𝑘 ∈ ℕ, and let 𝜒 : Cl+ 𝒪 → ℂ× be a primitive character such that 𝜒(𝛼) =
sgn(Nm(𝛼))𝑘 for any 𝛼 ∈ 𝒪. Then the function 𝐺𝜒(𝑧, 𝑠) has meromorphic continuation to all 𝑠 ∈ ℂ,
with Fourier expansion at 𝑠 = 0 given by

𝐺𝜒(𝑧, 0) = 𝐿(𝑘, 𝜒) − 𝛿𝑘=1
(2𝜋)2𝑘

√
𝐷

2𝑘−1
⋅ Γ(𝑘)2

𝐿(1 − 𝑘, 𝜒)

+ (2𝜋)2𝑘

√
𝐷

2𝑘−1
Γ(𝑘)2

∑
𝜈∈𝔡−1

𝒪 (
((
(( ∑

𝔞⊂𝜈𝔡𝒪
proper

𝜒(𝔞)Nm(𝔞)𝑘−1

)
))
))𝑒(Tr(𝜈𝑧)),

(1.2.9)

where 𝑒(Tr(𝜈𝑧)) = 𝑒2𝜋𝑖(𝜈𝑧1+𝜈′𝑧2). Here 𝛿𝑘=1 is 1 if 𝑘 = 1 and 0 otherwise.

The proof is classical, and follows [Hec24].

Proof :  We split 𝐺𝔞(𝑧, 𝑠) into sums 𝑐 = 0 and 𝑐 ≠ 0. The former gives the series

∑
𝑑∈𝔞/𝒪×

1
Nm(𝑑)𝑘 | Nm(𝑑)|2𝑠 = ∑

𝑑∈𝔞/𝒪×

sgn(Nm(𝑑))𝑘

| Nm(𝑑)|2𝑠+𝑘 , (1.2.10)

which equals 𝜁(2𝑠 + 𝑘, [𝔞]−1). The corresponding contribution to 𝐺𝜒(𝑧, 0) is therefore 𝐿(𝑘, 𝜒).

For fixed 𝑐 ≠ 0, we apply Poisson summation with the lattice 𝔞 ⊂ 𝐹 ⊗ ℝ to obtain

∑
𝑑∈𝔞

1
(𝑐𝑧 + 𝑑)𝑘 |𝑐𝑧 + 𝑑|2𝑠 = 1

Nm(𝔞)
√

𝐷
∑
𝜇∈𝔞∨

∫
𝐹⊗ℝ

𝑒(− Tr(𝜇𝑢))
(𝑐𝑧 + 𝑢)𝑘|𝑐𝑧 + 𝑢|2𝑠 d𝑢. (1.2.11)

The integral splits into a product of two integrals corresponding to each embedding 𝜎𝑖 : 𝐹 → ℝ.
Writing 𝑐 for 𝜎1(𝑐), 𝑐′ = 𝜎2(𝑐), 𝑧′ = 𝑧2 and so on, one finds by a change of variables that

𝐼(𝜇, 𝑐, 𝑠) ≔ ∫
ℝ

𝑒(−𝜇𝑢)
(𝑐𝑧 + 𝑢)𝑘|𝑐𝑧 + 𝑑|2𝑠 d𝑢 = sgn(𝑐)

|𝑐|2𝑠𝑐𝑘−1 ∫
ℝ

𝑒(−𝜇𝑐𝑢)
(𝑧 + 𝑢)𝑘+𝑠(𝑧 + 𝑢)𝑠 d𝑢. (1.2.12)

This integral can be described in terms of the so-called confluent hypergeometric function in
Definition 1.1: replacing 𝑢 with 𝑢 − ℜ(𝑧) shows that

𝐼(𝜇, 𝑐, 𝑠) = sgn(𝑐)𝑒(𝜇𝑐ℜ(𝑧))
|𝑐|2𝑠𝑐𝑘−1 Ξ(ℑ(𝑧), 𝑘 + 𝑠, 𝑠, 𝜇𝑐). (1.2.13)
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Now Proposition 1.2 implies that the higher-order coefficients have analytic continuation to all of ℂ
in the variable 𝑠. We first consider the case 𝜇 = 0. Then

Ξ(ℑ(𝑧), 𝑘 + 𝑠, 𝑠, 0) = (2𝜋)2𝑠−𝑘 Γ(2𝑠 + 𝑘 − 1)
Γ(𝑠)Γ(𝑠 + 𝑘)

(4𝜋ℑ(𝑧))1−(2𝑠+𝑘), (1.2.14)

by Proposition 1.2 (iii), and summing over 𝑐 ∈ 𝔞/𝒪× shows that ∑𝑐 𝐼(0, 𝑐, 𝑠) ⋅ 𝐼(0, 𝑐′, 𝑠) equals

(2𝜋)2𝑠+𝑘(Γ(2𝑠 + 𝑘 − 1)
Γ(𝑠)Γ(𝑠 + 𝑘)

)
2

(4𝜋ℑ(𝑧))1−(2𝑠+𝑘) ∑
𝑐

sgn(Nm(𝑐))𝑘−1

|Nm(𝑐)|2𝑠+𝑘−1 . (1.2.15)

Consequently, the contribution from 𝜇 = 0 to the constant term of 𝐺𝜒(𝑧, 𝑠) is

Nm(𝔞)𝑘−1
√

𝐷
(2𝜋)2𝑠+𝑘(Γ(2𝑠 + 𝑘 − 1)

Γ(𝑠)Γ(𝑠 + 𝑘)
)

2

(4𝜋ℑ(𝑧))−(2𝑠+𝑘−1)2𝐿(2𝑠 + 𝑘 − 1, 𝜒). (1.2.16)

When 𝑘 ≥ 2, this vanishes at 𝑠 = 0 due to the pole of Γ(𝑠) in the denominator. For 𝑘 = 1, 𝑠 = 0, the
poles of the gamma factors cancel, leaving a residue of 12 , and the remaining contribution is

− (2𝜋)2
√

𝐷 ⋅ Γ(𝑘)2

𝐿(0, 𝜒)
4

. (1.2.17)

For 𝜇 non-zero, we evaluate Ξ using Proposition  1.3. If 𝜇𝑐 is not totally positive, 𝐼(𝜇, 𝑐, 0) ⋅
𝐼(𝜇′, 𝑐′, 0) = 0 due to the pole of Γ(𝑠) at 𝑠 = 0. In the totally positive case, the formulae give

𝐼(𝜇, 𝑐, 0) ⋅ 𝐼(𝜇′, 𝑐′, 0) = sgn(Nm(𝑐))(2𝜋𝑖)2𝑘

Γ(𝑘)2 Nm(𝜇)𝑘−1 (1.2.18)

for 𝑠 = 0.

Let 𝜈 = 𝜇𝑐, and write 𝜇 =
√

𝐷𝛼 for some 𝛼 ∈ 𝔞−1. Then 𝛼𝔞 is a proper integral 𝒪-ideal which divides
𝜈𝔡, since 𝛼𝔞 = 𝜇

√
𝐷𝔞 ⊃ 𝜇

√
𝐷𝑐 = 𝜈𝔡𝒪. If we fix 𝜈 and vary 𝜇 and 𝑐 such that 𝜇𝑐 = 𝜈, then 𝔟 ≔ 𝛼𝔞

runs through the proper integral 𝒪-ideals dividing 𝜈𝔡 with class [𝔟] = [𝔞] exactly twice each. This
accounts for all the proper ideal divisors of 𝜈𝔡𝒪: if 𝜈 ∈ 𝔡𝒪 and a proper ideal 𝔟 ⊂ 𝜈𝔡𝒪 in 𝐴, then 𝔟𝔞−1

is principal and generated by some 𝛼 ∈ 𝔞−1.

Since 𝜈 is totally positive, 𝜒(𝛼) = sgn(Nm(𝛼))𝑘 = −sgn(Nm(𝑐))𝑘, and a short computation shows
that

Nm(𝔟)𝑘−1𝜒(𝔟) = Nm(𝜇)𝑘−1(−𝐷)𝑘−1Nm(𝔞)𝑘−1𝜒(𝔞) sgn(Nm(𝑐)). (1.2.19)

Collecting terms, we find that the 𝜈-th coefficient of 𝐺𝜒 is given by

(2𝜋)2𝑘

√
𝐷

2𝑘−1
Γ(𝑘)2

∑
𝔞⊂𝜈𝔡𝒪
proper

𝜒(𝔞)Nm(𝔞)𝑘−1, (1.2.20)

which gives the result. □

Corollary 1.13 :  Let

𝐸𝜒(𝑧) ≔ Γ(𝑘)2
√

𝐷
2𝑘−1

(2𝜋)2𝑘 ⋅ 𝐺𝜒(𝑧, 0). (1.2.21)

Then 𝐸𝜒(𝑧) has Fourier expansion
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𝐸𝜒(𝑧) = 𝜀(𝜒)𝐿(1 − 𝑘, 𝜒)
4

− 𝛿𝑘=1
𝐿(1 − 𝑘, 𝜒)

4

+ ∑
𝜈∈𝔡−1

𝒪 (
((
(( ∑

𝔞⊂𝜈𝔡𝒪
proper

𝜒(𝔞)Nm(𝔞)𝑘−1

)
))
))𝑒(Tr(𝜈𝑧)),

(1.2.22)

and is a holomorphic Hilbert modular form of parallel weight 𝑘.

Proof :  By the functional equation for 𝐿(𝑠, 𝜒),

𝐿(1 − 𝑘, 𝜒) = 𝜀(𝜒)𝐿(𝑘, 𝜒)
√

𝐷
2𝑘−1 Γℝ(𝑘 + 1)2

Γℝ(2 − 𝑘)2 . (1.2.23)

The standard identities for the Γ-function give

Γ(𝑠+1
2 )

Γ(2−𝑠
2 )

= 21−𝑠 sin(𝜋𝑠
2

)Γ(𝑠)√
𝜋

, (1.2.24)

so

𝐿(1 − 𝑘, 𝜒) = 𝜀(𝜒)𝐿(𝑘, 𝜒)
√

𝐷
2𝑘−1

4 Γ(𝑘)2

(2𝜋)2𝑘 . (1.2.25)

This proves the first claim. For a proof of the second, which is equivalent to understanding the
behaviour of Eisenstein series under certain lowering operators, see [Gar90, §4.7]. □

Note that this is very similar to the Fourier expansion of the Hilbert Eisenstein series of level SL2(𝒪𝐹 )
with unramified character 𝜒, compare [DDP11, Prop. 2.1].

1.3 Adelic Hilbert modular forms
The theory of Hecke operators for Hilbert modular forms is best understood using the adelic language.
This is due to complications arising when the ground field has non-trivial class number. While good
references for adelic Hilbert modular forms such as [RT11], [Gar90], [DV13] and [BH21] exist, we give
some details for completeness.

Recall from [GH19, §6] the definition of an automorphic form: an automorphic form for GL2(𝔸𝐹 ) is a
smooth function Φ : GL2(𝔸𝐹 ) → ℂ satisfying:

(i) Φ(𝛾𝑔) = Φ(𝑔) for all 𝛾 ∈ GL2(𝐹);
(ii) The span of Φ(𝑔𝑘) for 𝑘 ∈ 𝐾𝑓𝐾∞, where 𝐾𝑓 ≔ GL2(𝒪𝐹 ) ⊂ GL2(𝔸𝐹 ) and 𝐾∞ ≔ SO2 (ℝ)𝑑 ⊂

GL2(𝐹∞), is finite-dimensional;
(iii) Φ is 𝑍(𝔤)-finite, where 𝔤 is the Lie algebra of GL2(𝐹∞);
(iv) There exists an adelic Hecke character 𝜔 : 𝔸×

𝐹 → ℂ such that Φ(𝑧𝑔) = 𝜔(𝑧)Φ(𝑔) for any 𝑧 ∈
𝑍(𝐺).

We denote the space of such functions by 𝒜𝑘(𝐾, 𝜔). To interpret an automorphic form as a Hilbert
modular form, first note that by [PRR93] Proposition 8.1, the determinant map induces a bijection

GL2(𝐹) \ GL2(𝔸𝐹 )/ GL+
2 (ℝ)𝐾𝑓 → 𝐹× \ 𝔸×

𝐹 /𝐹+
∞𝒪𝐹 ≅ Cl+ 𝒪𝐹 . (1.3.1)

Thus we can pick representatives 𝑡𝜆 = (𝜆
0

0
1), where 𝜆 ∈ 𝔸×

𝐹  has infinite components 1, and corre-
sponds to an ideal 𝔱𝜆. For the representative corresponding to 𝒪, we always pick 𝜆 = 1. This gives a
decomposition
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GL2(𝔸𝐹 ) = ⨆
𝜆

GL2(𝐹)𝑡𝜆𝐾𝑓 GL+
2 (ℝ ⊗ 𝐹). (1.3.2)

Since 𝔥𝑑 = GL+
2 (𝐹∞)/𝑍(ℝ)𝐾∞, we have

GL2(𝐹) \ GL2(𝔸𝐹 )/𝑍(ℝ)𝐾𝑓𝐾∞ = ⨆
ℎ

𝜆
Γ𝜆 \ 𝔥𝑑, (1.3.3)

with Γ𝜆 ≔ GL+
2 (𝐹) ∩ 𝑡𝜆𝐾𝑓 𝑡−1

𝜆 . An automorphic form on GL2(𝔸𝐹 ) therefore gives rise to a tuple of
functions {Φ𝑖 : 𝔥𝑑 → ℂ} defined by

Φ𝜆(𝑧) = Φ(𝑡𝜆𝑔𝑧), (1.3.4)

where 𝑔𝑧 ∈ GL2(𝔸𝐹 ) is 1 at finite places, and for 𝑣 | ∞,

𝑔𝑧𝑣
= (1

0
𝑥𝑣
1 )

(
((𝑦

1
2𝑣

0
0

𝑦−1
2𝑣 )
)) for 𝑧𝑣 = 𝑥𝑣 + 𝑖𝑦𝑣 ∈ 𝔥. (1.3.5)

Note that for any 𝜆 ∈ Cl+ 𝐹  and 𝛾 ∈ Γ𝜆, Φ𝜆 |𝑘 𝛾 = Φ𝜆. If Φ𝜆 is holomorphic, then it is a classical
Hilbert modular form of level Γ𝜆 as described in Section 1.2.

Fourier–Whittaker expansions

Let Φ : GL2(𝔸𝐹 ) → ℂ be an adelic Hilbert modular form. By GL2(𝐹)-invariance,

Φ((1
0

𝛼
1)𝑔) = Φ(𝑔) for all 𝛼 ∈ 𝐹 , (1.3.6)

so we can write Φ in terms of its Fourier–Whittaker expansion,

Φ((1
0

𝑥
1)𝑔) = 𝑎0(Φ, 𝑔) + ∑

𝜈∈𝐹×

𝑊𝜈(Φ, 𝑔) ⋅ 𝜓(𝜈𝑥) for 𝑥 ∈ 𝔸𝐹 ,

𝑊𝜈(Φ, 𝑔) ≔ ∫
𝐹\𝔸𝐹

Φ((1
0

𝑢
1)𝑔)𝜓(−𝜈𝑢) d𝑢,

𝑎0(Φ, 𝑔) ≔ ∫
𝐹\𝔸𝐹

Φ((1
0

𝑢
1)𝑔) d𝑢,

(1.3.7)

where 𝜓 is the standard additive adelic character. By [GG12, Theorem 5.8], when 𝑔 = (𝑦
0

0
1), we have

Φ((𝑦
0

𝑥
1)) = |𝑦|𝔸𝐹

(
((𝑐(𝑦) + ∑

𝜉∈𝐹×
≫0

𝑏(𝜉𝑦𝑓)𝑊𝑘(𝜉𝑥∞)𝜓(𝜉𝑦)
)
)) (1.3.8)

for some 𝑐(𝑦) ∈ ℂ, 𝑏 : 𝔸𝐹,𝑓 → ℂ, and some function 𝑊𝑘 : 𝐹 ⊗ ℝ → ℂ. Furthermore, 𝑏(𝛼) depends
only on the fractional ideal 𝔞 = 𝐹 ∩ 𝛼 ⋅ 𝒪𝐹 , and vanishes unless 𝔞 is integral. To emphasize the
dependence on 𝔞 and Φ, we write

𝐶(𝔞, Φ) ≔ 𝑏(𝛼). (1.3.9)

Similarly, we let 𝐶𝜆(0, Φ) ≔ 𝑎0(Φ, 𝑡𝜆), where 𝜆 ∈ 𝔸×
𝐹  is an idele representing a given class in Cl+ 𝒪,

and 𝑡𝜆 = (𝜆
0

0
1). By the local-global principle for lattices, any integral ideal 𝔞 has an associated number

𝐶(𝔞, Φ).
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Hecke actions and 𝑝-refinement

Let 𝑣 be a place of 𝐹 , and fix a compact open subgroup 𝐾𝑣 ⊂ 𝐺𝑣 ≔ GL2(𝐹𝑣). The Hecke algebra at 𝑣
is the space ℋ𝑣(𝐺𝑣, 𝐾𝑣) of locally constant 𝐾𝑣-bi-invariant functions 𝐺𝑣 → ℂ. This is a ℂ-algebra
with respect to the convolution product

(𝜑1 ∗ 𝜑2)(𝑔) ≔ ∫
𝐺𝑣

𝜑1(𝑔ℎ−1)𝜑2(ℎ)𝑑ℎ, (1.3.10)

where we equip 𝐺𝑣 with the usual Haar measure, normalised so that Vol(𝐾𝑣) = 1.

A basis for this space is given by functions of the form 𝟙𝐾𝑣𝑔𝐾𝑣
 for 𝑔 ∈ GL2(𝐹𝑣). If 𝐾𝑣 is maximal, then

ℋ𝑣 is said to be spherical, and is commutative by [GH19, Theorem 5.5.1]. A distinguished function is
given by

𝑇𝔭𝔳
≔ 𝟙𝐾𝑣(𝜛𝑣

0
0
1)𝐾𝑣

. (1.3.11)

Globalizing, we let 𝐾𝑓 ⊂ GL2(𝔸𝐹,𝑓) be a compact open subgroup, and fix 𝛼 ∈ GL2(𝔸𝐹,𝑓). The
double coset 𝐾𝑓𝛼𝐾𝑓  can be decomposed into a finite disjoint union of right 𝐾𝑓 -cosets, 𝐾𝑓𝛼𝐾𝑓 =
⨆𝑗 𝛽𝑗𝐾𝑓 . For any 𝐾𝑓 -invariant automorphic form Φ, we then define

([𝐾𝑓𝛼𝐾𝑓]Φ)(𝑔) ≔ ∑
𝛽

Φ(𝑔𝛽). (1.3.12)

More formally, this is the convolution of Φ with the function 𝟙𝐾𝑓𝛼𝐾𝑓
. For almost all places 𝑣, 𝐾𝑣 is

spherical and 𝛼𝑣 ∈ 𝐾𝑣, so the action at 𝑣 is trivial.

If 𝔪 = ∏𝑣 𝔭𝑚𝑣𝑣 ≤ 𝒪𝐹  is an integral ideal, write 𝜛𝔪 ≔ ∏𝑣 𝜛𝑚𝑣𝑣  and define

𝑇𝔪Φ ≔ [𝐾(𝜛𝔪
0

0
1)𝐾]Φ. (1.3.13)

Write 𝕋𝑅(𝐾) for the 𝑅-subalgebra of End(𝒜𝑘(𝐾, 𝜔)) generated by {𝑇𝔪}.

An eigenform is an automorphic form Φ which is an eigenvector for all the elements of 𝕋ℂ, and it is
normalised if 𝐶(𝒪, Φ) = 1. In this case, it is known that 𝐶(𝔪, Φ) is the 𝑇𝔪-eigenvalue of Φ, see [BH21,
Proposition 3.2.8].

We recall from [BH21, §3.4] the notion of a 𝑝-refinement. For a finite place 𝑣 of 𝐹 , let 𝑉 −
𝑣 ≔ (1

0
0

𝜛𝑣
).

Lemma 1.14 :  Suppose Φ has level 𝐾𝑓 ⊂ GL2(𝔸𝐹,𝑓), and suppose 𝐾𝑣 is spherical. Then
(i) 𝑉 −

𝑣 Φ has level 𝐾(𝑣)
𝑓 ⋅ 𝐾1(𝔭𝑣), and is independent of the choice of 𝜛𝑣.

(ii) For any 𝑐 ∈ ℂ, 𝑎1((1 − 𝑐𝑉 −
𝑣 )Φ) = 𝑎1(Φ).

(iii) For any integral ideal 𝔪 such that 𝑣 ∤ 𝔪, 𝑇𝔪𝑉 −
𝑣 Φ = 𝑉 −

𝑣 𝑇𝔪Φ.

Proof :  See [BH21, Lemma 3.4.1]. □

Let Φ be a normalised eigenform with central character 𝜔, and fix a place 𝑣 of 𝐹  such that Φ is invariant
under 𝐾𝑣. Given a root 𝛼𝑣 of 𝑇 2 − 𝑎(𝔭𝑣, Φ)𝑇 + 𝜔(𝔭𝑣)𝑞𝑣, the 𝔭𝑣-refinement of Φ (with respect to 𝛼𝑣)
is the automorphic form

Φ(𝔭𝔳) ≔ (1 − 𝛼𝑣𝑉 −
𝑣 )Φ. (1.3.14)

More generally, if 𝑝 is a rational prime, a 𝑝-refinement of Φ is given by

Φ(𝑝) ≔
(
((∏

𝑣 | 𝑝
(1 − 𝛼𝑣𝑉 −

𝑣 )
)
))Φ, (1.3.15)
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given a choice of (𝛼𝑣)𝑣∣𝑝 as above.

Proposition 1.15 :  Φ(𝑝) is a normalised eigenform of level 𝐾(𝑝)
𝑓 𝐾1(𝑝), with Fourier coefficients given by

𝐶(𝔭𝑗
𝑣, Φ(𝑝)) = {𝐶(𝔭𝑗

𝑣, Φ) if 𝑣 ∤ 𝑝,
𝛼𝑗

𝑣 if 𝑣 ∣ 𝑝.
(1.3.16)

Proof :  See [BH21, Proposition 3.4.4]. □

1.4 Adelic Eisenstein series
References: [Che15], [Shi88], [Shi83]

In this section, we adopt the shorthands 𝐺 = GL2, 𝐾𝑓 ≔ GL2(𝒪) ⊂ 𝐺(𝔸𝐹,𝑓), and write 𝐾∞ for the
maximal compact subgroup of 𝐺(𝐹∞), isomorphic to ∏𝜎∈Σ𝐹

SO2(ℝ). Let 𝐾 ≔ 𝐾𝑓𝐾∞ ⊂ 𝐺(𝔸𝐹 ).
We also let 𝑍 ⊂ 𝐺 denote the standard diagonal torus.

Definition 1.16 :  Let 𝜒1 and 𝜒2 be (not necessarily unitary) Hecke characters on 𝐹× \ 𝔸×. We define
ℬ(𝜒1, 𝜒2) ≔ nInd(𝜒1 × 𝜒2) to be the space of functions 𝑓 ∈ 𝐶∞(𝐺(𝔸𝐹 ), ℂ) such that
• for all 𝑎, 𝑏 ∈ 𝔸×

𝐹  and 𝑥 ∈ 𝔸𝐹 ,

𝑓((𝑎
0

𝑥
𝑏)𝑔) = |𝑎

𝑏
|

1
2
𝜒1(𝑎)𝜒2(𝑏)𝑓(𝑔); (1.4.1)

• 𝑓  is right 𝐾-finite: the span of {𝑓(𝑔𝑘) : 𝑘 ∈ 𝐾} is finite-dimensional.

The vector space ℬ(𝜒1, 𝜒2) is naturally a right 𝐺(𝔸𝐹 )-representation with action (𝑔 ⋅ 𝑓)(ℎ) =
𝑓(𝑔ℎ), and decomposes as a restricted tensor product of similarly defined local spaces, ℬ(𝜒1, 𝜒2) =
⨂𝑣 ℬ𝑣(𝜒1,𝑣, 𝜒2,𝑣). One may naturally construct elements of ℬ(𝜒1, 𝜒2) via so-called Tate integrals:
let 𝜑 ∈ 𝒮(𝔸2

𝐹 ) be a Schwartz function, and consider

𝜒1(det 𝑔)|det 𝑔|1
2 ∫

𝔸×
𝐹

|𝑡| ⋅ 𝜒1𝜒−1
2 (𝑡)𝜑((0, 𝑡)𝑔)d×𝑡. (1.4.2)

A straightforward computation shows that this defines an element of ℬ(𝜒1, 𝜒2) whenever the integral
converges. This gives a 𝐺(𝔸𝐹 )-equivariant map 𝒮(𝔸2

𝐹 ) → ℬ(𝜒1, 𝜒2). It is proved in [Shi88, Lemma
5] that this map is in fact surjective.

It is convenient to separate out the unitary part of 𝜒1 and 𝜒2 by twisting by suitable powers of the
norm character. This motivates the following definition:

Definition 1.17 :  Let 𝜑 ∈ 𝒮(𝔸2
𝐹 ) be a Schwartz function, fix 𝑠 ∈ ℂ and a pair of unitary Hecke

characters 𝜒1, 𝜒2 : 𝔸×
𝐹 → ℂ×. Then the associated Godement section is the element

𝑓(𝑔) ≔ 𝜒1(det 𝑔)|det 𝑔|𝑠 ∫
𝔸×

𝐹

|𝑡|2𝑠 ⋅ 𝜒1𝜒−1
2 (𝑡)𝜑((0, 𝑡)𝑔)d×𝑡, (1.4.3)

which defines an element of ℬ(𝜒1 | ⋅ |𝑠−1
2 , 𝜒2 | ⋅ |−𝑠+1

2 ).

One can show that this converges for ℜ(𝑠) > 1. From now on, 𝑓  will always denote a Godement
section of this form. If 𝜒1, 𝜒2 and 𝜑 factor as restricted tensor products over places of 𝐹 , then 𝑓  does
as well:

𝑓 = ⨂
𝑣

𝑓𝑣 = 𝑓fin ⊗ 𝑓∞. (1.4.4)
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We can construct Schwartz functions 𝜑 ∈ 𝒮(𝔸2
𝐹 ) by taking products of local Schwartz functions at

each place. For almost all places these are given as follows:

Definition 1.18 :  Fix an integer 𝑘 ≥ 0.
(i) The standard weight 𝑘 Schwartz function 𝜑𝑘 ∈ 𝒮(ℝ2) is given by the formula

𝜑𝑘(𝑢, 𝑣) ≔ (−𝑖𝑢 + 𝑣)𝑘𝑒−𝜋(𝑢2+𝑣2). (1.4.5)
(ii) Fix a place 𝑣 ∤ ∞. We say 𝜑𝑣 is spherical if

𝜑𝑣 = 𝟙𝒪𝐹𝑣×𝒪𝐹𝑣
.

The function 𝑓  almost defines automorphic form on 𝐺(𝔸𝐹 ), but fails to be left invariant under
multiplication by elements of 𝐺(𝐹). To remedy this, we simply average; note that 𝑓  is trivial on 𝐵(𝐹),
so the function

∑
𝛾∈𝐵(𝐹)\𝐺(𝐹)

𝑓(𝛾𝑔) (1.4.6)

is well-defined and 𝐵(𝐹)-invariant with central character 𝜒1𝜒2 whenever it converges.

Definition 1.19 :  Let 𝑓  be a Godement section. The Eisenstein series associated to 𝑓  is given by the
formula

𝐸(𝑔, 𝑓) ≔ ∑
𝛾∈𝐵(𝐹)\𝐺(𝐹)

𝑓(𝛾𝑔). (1.4.7)

This is determined by the choice of characters 𝜒1 and 𝜒2, the Schwartz function 𝜑 and the complex
parameter 𝑠.

Proposition 1.20 ([Gar90, pp.  110-111]) :  When ℜ(𝑠) > 1, the Eisenstein series 𝐸(𝑔, 𝑓) converges
absolutely, and uniformly for 𝑔 ∈ GL2(𝔸𝐹 ) in compact sets. Furthermore, it has a meromorphic contin-
uation in 𝑠 ∈ ℂ.

Just like the classical Eisenstein series in Section 1.2, the meromorphic continuation of 𝐸(𝑔, 𝑓) follows
from the computation of the Fourier expansion which we will see later. The following proposition
implies that 𝐸 is an eigenform with respect to the Hecke operators 𝑇𝑣 for which 𝐾𝑣 is spherical.

Proposition 1.21 :  Suppose 𝐸(𝑔, 𝑓) is right GL2(𝒪𝐹𝑣
)-invariant, and that

𝑓(𝑢𝑢′

0
0
1) = 𝑓(𝑢

0
0
1)𝑓(𝑢′

0
0
1). (1.4.8)

Then

𝑇𝑣𝐸(𝑔, 𝑓) = 𝐸(𝑔, 𝑓) ⋅ ∫
𝐾𝑣(𝜛

0
0
1)𝐾𝑣

𝑓(ℎ−1) dℎ. (1.4.9)

Proof :  See [Gar90, p. 119]. □

Note that this condition is satisfied if 𝜒1 and 𝜒2 are unramified at 𝑣 and 𝜑𝑣 is right GL2(𝒪𝐹𝑣
)-

invariant.

To see the relationship with the more usual expression for Eisenstein series, we compute the associated
classical Hilbert modular form in the unramified case. When 𝐹 = ℚ, this is well-known and appears in
for example [Che15, Corollary 2.4.12] and [Gar90, Chapter 4], but for totally real fields there does not
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seem to be any explicit passage from adelic to classical in the literature. Notably, the classical reference
[Shi78, §3] introduces the Eisenstein series in terms of their classical Poincaré series.

Since 𝑓  is decomposable, this boils down to one computation for each of the places of 𝐹 . We first
gather a few lemmas for the archimedean places.

Lemma 1.22 :  Let 𝜑𝑘 be the standard weight 𝑘 Schwartz function. If 𝑟(𝜃) ≔ (cos 𝜃
sin 𝜃

− sin 𝜃
cos 𝜃 ), then

𝜑𝑘((𝑢, 𝑣)𝑟(𝜃)) = 𝑒−𝑖𝑘𝜃𝜑𝑘(𝑢, 𝑣). Consequently, for any 𝑣 | ∞, we have 𝑓𝑣(𝑔𝑟(𝜃)) = 𝑓𝑣(𝑔)𝑒−𝑖𝑘𝜃.

Proof :  First, note that 𝑢2 + 𝑣2 is preserved under multiplication by 𝑟(𝜃). Combining this with the
calculation (𝑢, 𝑣)𝑟(𝜃) = (−𝑖𝑢 + 𝑣)(cos 𝜃 − 𝑖 sin 𝜃) finishes the proof. □

Lemma 1.23 :  Suppose 𝛾 ∈ GL+
2 (ℝ), and let 𝑔𝑧 ≔ (𝑦

0
𝑥
1) whenever 𝑧 = 𝑥 + 𝑖𝑦. Then

𝛾𝑔𝑧 = 𝑔𝛾𝑧 ⋅ 𝑟(𝜃) ⋅ |𝑐𝑧 + 𝑑|, where 𝑒𝑖𝜃 = 𝑐𝑧 + 𝑑
|𝑐𝑧 + 𝑑|

. (1.4.10)

Proof :  Since 𝛾𝑔𝑧 ⋅ 𝑖 = 𝑔𝛾𝑧 ⋅ 𝑖, we have 𝛾𝑔𝑧 = 𝑔𝛾𝑧𝑟(𝜃) ⋅ 𝐶 for some 𝑟(𝜃) ∈ SO2(ℝ) 𝐶 ∈ ℝ. To find 𝜃
and 𝐶 , we compare the bottom rows:

𝑐𝑦 = 𝐶 sin 𝜃 and 𝑐𝑥 + 𝑑 = 𝐶 cos(𝜃). (1.4.11)

It follows that 𝑒𝑖𝜃 = 𝐶−1(𝑐𝑧 + 𝑑), and since 𝜃 ∈ ℝ, 𝐶 = |𝑐𝑧 + 𝑑|. □

Lemma 1.24 :  Suppose 𝑣 ∣ ∞. For any 𝛾 ∈ SL2(ℝ) and 𝑧 = 𝑥 + 𝑖𝑦 ∈ 𝔥,

𝑓𝑣(𝛾𝑔𝑧) = Γℝ(2𝑠 + 𝑘) 𝑦𝑠

|𝑐𝑧 + 𝑑|2𝑠−𝑘 𝑗(𝛾, 𝑧)−𝑘. (1.4.12)

Proof :  Since 𝑓 ∈ 𝐵(𝜒1 | ⋅ |𝑠−1
2 , 𝜒2 | ⋅ |−𝑠+1

2 ), 𝑓(𝑔𝑧) = 𝜒1𝑣
(𝑦)|𝑦|𝑠𝑣𝑓(1), and by [Che15, 2.4.8], 𝑓(1) =

Γℝ(2𝑠 + 𝑘). It follows that

𝑓𝑣(𝛾𝑔𝑧) = 𝑓𝑣(𝑔𝛾𝑧𝑟(𝜃)|𝑐𝑧 + 𝑑|)

= 𝑓𝑣(𝑔𝛾𝑧)𝑒−𝑖𝑘𝜃

= Γℝ(2𝑠 + 𝑘)ℑ(𝛾𝑧)𝑠𝑒−𝑖𝑘𝜃

= Γℝ(2𝑠 + 𝑘)ℑ(𝛾𝑧)𝑠( 𝑗(𝛾, 𝑧)
|𝑐𝑧 + 𝑑|

)
−𝑘

.

(1.4.13)

Finally, since ℑ(𝛾𝑧) = 𝑦|𝑐𝑧 + 𝑑|−2, this gives the claim. □

For the finite places, we also require a few lemmas.

Lemma 1.25 :  Fix a set of representatives 𝔯 for the wide ideal classes in Cl 𝐹 , and let 𝛿𝔯 be any matrix
𝛿𝑟 = (∗

𝑐
∗
𝑑) such that 𝑐𝒪𝐹 + 𝑑𝒪𝐹 = 𝔯. Then we have a decomposition

GL2(𝐹) = ⨆
[𝔯]∈ Cl 𝐹

𝐵(𝐹)𝛿𝔯 GL2(𝒪𝐹 ), (1.4.14)

and consequently, a bijection

𝐵(𝐹) \ GL2(𝐹) → ⨆
[𝔯]∈ Cl 𝐹

Γ𝛿𝔯
∩ 𝐵(𝐹) \ Γ𝛿𝔯

, (1.4.15)

where Γ𝛿 ≔ 𝛿 GL2(𝒪𝐹 )𝛿−1.
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Proof :  It is easily checked that 𝐵(𝐹) \ GL2(𝐹) ≅ ℙ1(𝐹) via the map 𝑔 ↦ (0, 1)𝑔. By [Gee88, Propo-
sition 1.1], ℙ1(𝐹)/ GL2(𝒪𝐹 ) is in bijection with wide ideal classes via [𝑐 : 𝑑] ↦ 𝑐𝒪𝐹 + 𝑑𝒪𝐹 , and
picking a set of representatives proves the first claim. The second map is defined as follows: an element
𝑔 ∈ GL2(𝐹) lies in a double coset corresponding to some 𝛿𝔯, so 𝑔 = 𝑏𝛿𝔯𝛾 for some 𝛾 ∈ GL2(𝒪𝐹 )
and 𝑏 ∈ 𝐵(𝐹). Then 𝑔𝛿−1

𝔯 ∈ 𝐵(𝐹)Γ𝛿𝔯
, and it is straightforward to check that the map 𝐵(𝐹)𝑔 ↦

𝐵(𝐹)𝑔𝛿−1
𝔯  is bijective. □

Note that we may freely adjust 𝛿𝔯 to have determinant 1.

Proposition 1.26 :  Fix a representative 𝛿 = 𝛿𝔯 ∈ SL2(𝐹) as above. Then

∏
𝑣∤∞

𝑓𝑣(𝛿) = 1√
𝐷

Nm(𝔯)2𝑠𝜌(𝔯)𝐿(2𝑠, 𝜌). (1.4.16)

Proof :  We compute:

𝑓𝑣(𝛿) = ∫
𝐹×

𝑣

|𝑡|2𝑠
𝑣 𝜌(𝑡)𝟙𝒪𝐹𝑣×𝒪𝐹𝑣

(𝑐𝑡, 𝑑𝑡)d×𝑡. (1.4.17)

Note that 𝑐𝑡, 𝑑𝑡 ∈ 𝒪𝐹𝑣
 if and only if 𝑡 ∈ (𝔯𝒪𝐹𝑣

)
−1

. Thus

𝑓𝑣(𝛿) = ∫
(𝔯𝒪𝐹𝑣)

−1
|𝑡|2𝑠

𝑣 𝜌(𝑡)d×𝑡

= 𝑞−𝛿𝑣
2𝑣 ∑

∞

𝑘=−𝑣(𝔯𝒪𝐹𝑣)

𝑞−2𝑠𝑘
𝑣 𝜌(𝜛)𝑘

= 𝑞−𝛿𝑣
2𝑣 ⋅ 𝑞2𝑠𝑣(𝔯𝒪𝐹𝑣)

𝑣 𝜌(𝜛𝑣)
−𝑣(𝔯𝒪𝐹𝑣)

1 − 𝑞−2𝑠
𝑣 𝜌(𝜛)

.

(1.4.18)

Here the last equality comes from summing the geometric series. Taking the product over all finite
places gives our result. □

Corollary 1.27 :  Suppose 𝑓  is the Godement section associated to a pair of unramified characters 𝜒1 and
𝜒2, and a Schwartz function 𝜑 which is spherical at all finite places. Fix 𝑘 ∈ ℕ and assume 𝜑𝑣 = 𝜑𝑘 for
all 𝑣 ∣ ∞.

Then

𝐸(𝑔𝑧, 𝑓) = 𝐿(2𝑠, 𝜌)Γℝ(2𝑠 + 𝑘) ∑
[𝔯]∈ Cl 𝐹

Nm(𝔯)2𝑠
√

𝐷
𝜌(𝔯) ∑

′

(𝑐,𝑑)=𝔯

𝑦𝑠

|𝑐𝑧 + 𝑑|2𝑠−𝑘
1

(𝑐𝑧 + 𝑑)𝑘 (1.4.19)

for any 𝑧 ∈ 𝔥.

As before, the symbol ∑′ means that the sum should be interpreted modulo the diagonal action of
𝒪×

𝐹 , 𝜀 ⋅ (𝑐, 𝑑) = (𝜀𝑐, 𝜀𝑑).

Proof :  First, note that if 𝛾 ∈ GL2(𝐹) corresponds to 𝛿𝔯 in the bijection in Equation (1.4.14), then

∏
𝑣

𝑓𝑣(𝛾) = ∏
𝑣

𝑓𝑣(𝛿𝔯𝑘) = ∏
𝑣∤∞

𝑓𝑣(𝛿𝔯) ∏
𝑣∣∞

𝑓𝑣(𝛿𝑟𝑘), (1.4.20)

as 𝑓𝑣 are right GL2(𝒪𝐹𝑣
)-invariant when 𝑣 is a finite place. Each matrix (∗

𝑐
∗
𝑑) in 𝐵(𝐹) ∩ GL2(𝒪𝐹 ) ⋅

𝛿𝔯 corresponds to a pair of elements 𝑐, 𝑑 ∈ 𝔯 modulo units such that 𝑐𝒪𝑓 + 𝑑𝒪𝐹 = 𝔯.

Now Proposition 1.26 and Lemma 1.24 give the claim. □
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Fourier expansion of adelic Eisenstein series

We now return to the general setup where 𝑓  is an arbitrary Godement section associated to a Schwartz
function 𝜑 and a pair of Hecke characters 𝜒1, 𝜒2.

Proposition 1.28 :  The Fourier–Whittaker expansion of 𝐸(𝑔, 𝑓) is given by

𝐸(𝑔, 𝑓) = 𝑓(𝑔) + ℳ(𝑓)(𝑔) + ∑
𝜈∈𝐹×

𝑊((𝜈
0

0
1)𝑔), (1.4.21)

where

ℳ(𝑓)(𝑔) = ∫
𝔸𝐹

𝑓(𝑤(1
0

𝑢
1)𝑔) d𝑢,

𝑊(𝑔) = ∫
𝔸𝐹

𝑓(𝑤(1
0

𝑢
1)𝑔)𝜓(−𝑢) d𝑢,

(1.4.22)

for 𝑤 = (0
1

−1
0 ).

Proof :  The Bruhat decomposition of GL2(𝐹) gives

𝐵(𝐹) \ 𝐺(𝐹) = {1} ⊔ {𝑤(1
0

𝜉
1) : 𝜉 ∈ 𝐹} for 𝑤 = (0

1
−1
0 ), (1.4.23)

hence

𝐸(𝑔, 𝑓) = 𝑓(𝑔) + ∑
𝜉∈𝐹

𝑓(𝑤(1
0

𝜉
1)𝑔). (1.4.24)

Now plug into the Whittaker expansion to obtain

𝑐𝜈(𝑔) = ∫
𝐹\𝔸𝐹

𝑓((1
0

𝑢
1)𝑔)𝜓(−𝜈𝑢) d𝑢 + ∫

𝐹\𝔸𝐹

∑
𝜉∈𝐹

𝑓(𝑤(1
0

𝜉
1)(1

0
𝑢
1)𝑔)𝜓(−𝜈𝑢) d𝑢

= 𝑓(𝑔) ∫
𝐹\𝔸𝐹

𝜓(−𝜈𝑢) d𝑢 + ∫
𝔸𝐹

𝑓(𝑤(1
0

𝑢
1)𝑔)𝜓(−𝜈𝑢) d𝑢,

(1.4.25)

by unfolding the integral. From character orthogonality we get

∫
𝐹\𝔸𝐹

𝜓(−𝜈𝑢) d𝑢 = {1 if 𝜈 = 0,
0 if 𝜈 ≠ 0, (1.4.26)

so the first term only contributes to 𝑐𝜈(𝑔) for 𝜈 = 0. Suppose now 𝜈 ≠ 0 and perform the change of
variables 𝑢′ = 𝜈𝑢. Since |𝜈|𝔸𝐹

= 1,

𝑐𝜈(𝑔) = ∫
𝔸𝐹

𝑓(𝑤(1
0

𝑢′𝜈−1

1 )𝑔)𝜓(−𝑢′) d𝑢′

= ∫
𝔸𝐹

𝑓(𝑤(1
0

𝑢′𝜈−1

1 )𝑔)𝜓(−𝑢′) d𝑢′

= ∫
𝔸𝐹

𝑓((1
0

0
𝜈−1)𝑤(1

0
𝑢′

1 )(𝜈
0

0
1)𝑔)𝜓(−𝑢′) d𝑢′

= ∫
𝔸𝐹

𝑓(𝑤(1
0

𝑢′

1 )(𝜈
0

0
1)𝑔)𝜓(−𝑢′) d𝑢′ = 𝑊((𝜈

0
0
1)𝑔),

(1.4.27)
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proving our claim. □

The adelic integrals defining the higher-order Fourier–Whittaker coefficients of 𝐸(𝑔, 𝑓) decompose
as products over the places of 𝐹  whenever 𝜑 does:

Proposition 1.29 :  Let 𝐸(𝑔, 𝑓) = ∑𝜈 𝑐𝜈(𝑔), where 𝑓  is the Godement section associated to a pair of
Hecke characters 𝜒1, 𝜒2 and 𝜑 = 𝜑𝑓 ⊗ 𝜑∞ where 𝜑𝑓(𝑣1, 𝑣2) = 𝛼(𝑣1)𝛽(𝑣2) for some 𝛼, 𝛽 : 𝔸𝐹,𝑓 → ℂ.
For 𝜌 = 𝜒1𝜒−1

2 , we have 𝐸(𝑔, 𝑓) = 0 unless 𝜌∞(𝛼) = (sgn Nm(𝛼))𝑘, in which case we have:
(i) If 𝜈 ≠ 0, then

𝑐𝜈((1
0

𝑥
1)(𝑦

0
0
1)) = 𝜓(𝜈𝑥)𝜒1(𝜈𝑦)|𝜈𝑦|𝑠

(
((∫

𝔸×
𝐹,𝑓

|𝑡|2𝑠−1𝜌(𝑡)𝛼(𝑡𝑦𝜈)𝛽(𝑡−1)d×𝑡
)
))

× Γℝ(2𝑠 + 𝑘)Ξ(𝜈𝑦; 𝑠 + 𝑘
2
, 𝑠 − 𝑘

2
; 1),

(1.4.28)

for all 𝑦 ∈ 𝔸×
𝐹  and 𝑥 ∈ 𝔸𝐹 , with Ξ given by Definition 1.1.

(ii) The constant term of 𝐸 satisfies

𝑐0((1
0

𝑥
1)(𝑦

0
0
1)) = 𝜒1(𝑦)|𝑦|𝑠𝛼(0)Γℝ(2𝑠 + 𝑘)𝑑 ∫

𝔸×
𝐹,𝑓

|𝑡|2𝑠𝜌(𝑡)𝛽(𝑡)d×𝑡

+𝜒2(𝑦)|𝑦|1−2𝑠𝛽(0) ∫
𝔸×

𝐹,𝑓

|𝑡|2𝑠−1𝜌(𝑡)𝛼(𝑡)d×𝑡 ⋅ 𝐶𝑑
∞

(1.4.29)

where

𝐶∞ = 𝜋 ⋅ 22−2𝑠 Γℝ(2𝑠 + 𝑘)Γ(2𝑠 − 1)
Γ(𝑠 + 𝑘

2)Γ(𝑠 − 𝑘
2)

. (1.4.30)

This is similar to the statement of [Gar90, second Corollary on p. 118], though this contains some
typographical errors.

Proof :  A change of variables shows that 𝑊((1
0

𝑥
1)𝑔) = 𝜓(𝑥)𝑊(𝑔) for any 𝑔 ∈ GL2(𝔸𝐹 ) and 𝑥 ∈

𝔸𝐹 . Since

(𝛼
0

0
1)(1

0
𝛽
1) = (1

0
𝛼𝛽
1 )(𝛼

0
0
1), (1.4.31)

for any 𝛼, 𝛽 ∈ 𝔸𝐹 , we obtain

𝑐𝜈((1
0

𝑥
1)(𝑦

0
0
1)) = 𝑊((𝜈

0
0
1)(1

0
𝑥
1)(𝑦

0
0
1)) = 𝜓(𝑥𝜈)𝑊((𝜈𝑦

0
0
1)), (1.4.32)

and so it suffices to compute 𝑊((𝑦
0

0
1)). Note that

𝑊((𝑦
0

0
1)) = ∫

𝔸𝐹

𝑓(𝑤(1
0

𝑢
1)(𝑦

0
0
1))𝜓(−𝑢) d𝑢

= 𝜒1(𝑦)|𝑦|𝑠 ∫
𝔸𝐹

∫
𝔸×

𝐹

|𝑡|2𝑠𝜌(𝑡)𝜑(𝑡𝑦, 𝑡𝑢)d×𝑡 𝜓(−𝑢) d𝑢.
(1.4.33)

We first compute the archimedean part, and fix a place 𝑣 ∣ ∞. Since 𝜑𝑣 = 𝜑𝑘,
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𝑊((𝑦
0

0
1)) = 𝜒1,𝑣(𝑦)|𝑦|𝑠𝑣 ∫

𝐹𝑣

𝜓(−𝑢) ∫
𝐹×

𝑣

|𝑡|2𝑠
𝑣 𝜌𝑣(𝑡)𝑡𝑘(−𝑖𝑦 + 𝑢)𝑘𝑒−𝜋𝑡2(𝑦2+𝑢2)d×𝑡 d𝑢

= 𝜒1,𝑣(𝑦)|𝑦|𝑠𝑣 ∫
𝐹𝑣

𝜓(−𝑢)(−𝑖𝑦 + 𝑢)𝑘(∫
𝐹×

𝑣

|𝑡|2𝑠
𝑣 𝜌𝑣(𝑡)𝑡𝑘𝑒−𝜋𝑡2(𝑦2+𝑢2)d×𝑡) d𝑢.

(1.4.34)

If we split the domain of the inner integral into ℝ>0 and ℝ<0, we see that the two terms cancel unless
𝜌𝑣(𝑡) = (sgn 𝑡)𝑘, in which case the inner integral equals

2 ∫
∞

0
𝑡2𝑠+𝑘𝑒−𝜋𝑡2(𝑢2+𝑦2)d×𝑡. (1.4.35)

When 𝑟 ≔ 𝜋𝑡2(𝑢2 + 𝑦2) we have d𝑟
𝑟 = 2d𝑡

𝑡 , which gives

(𝑢2 + 𝑦2)−(𝑠+𝑘
2)𝜋−(𝑠+𝑘

2) ∫
∞

0
𝑟𝑠+𝑘

2 𝑒−𝑟 d𝑟
𝑟

= (𝑢2 + 𝑦2)−(𝑠+𝑘
2)𝜋−(𝑠+𝑘

2)Γ(𝑠 + 𝑘
2
)

= (𝑢2 + 𝑦2)−(𝑠+𝑘
2)Γℝ(2𝑠 + 𝑘).

(1.4.36)

Thus

𝑊((𝑦
0

0
1)) = 𝜒1,𝑣(𝑦)|𝑦|𝑠𝑣Γℝ(2𝑠 + 𝑘) ∫

ℝ
𝜓(−𝑢)(𝑢 − 𝑖𝑦)𝑘(𝑢2 + 𝑦2)−(𝑠+𝑘

2) d𝑢

= 𝜒1,𝑣(𝑦)|𝑦|𝑠𝑣Γℝ(2𝑠 + 𝑘) ∫
ℝ

𝜓(−𝑢)
(𝑢 + 𝑖𝑦)𝑠+𝑘

2 (𝑢 − 𝑖𝑦)𝑠−𝑘
2

d𝑢

= 𝜒1,𝑣(𝑦)|𝑦|𝑠𝑣Γℝ(2𝑠 + 𝑘)Ξ(𝑦; 𝑠 + 𝑘
2
, 𝑠 − 𝑘

2
; 1),

(1.4.37)

where Ξ is the confluent hypergeometric function from Definition 1.1. As a consequence, we note that
𝑐𝜈,𝑣 has an analytic continuation to 𝑠 ∈ ℂ.

We now turn to the non-archimedean component. Fix a finite place 𝑣 of 𝐹  and suppose 𝜑𝑣 = 𝛼𝑣 ⊗
𝛽𝑣. Then

𝑊((𝑦
0

0
1)) = 𝜒1,𝑣(𝑦)|𝑦|𝑠𝑣 ∫

𝐹×
𝑣

|𝑡|2𝑠
𝑣 𝜌𝑣(𝑡)𝛼𝑣(𝑡𝑦)(∫

𝐹𝑣

𝜓𝑣(−𝑢)𝛽𝑣(𝑡𝑢) d𝑢)d×𝑡, (1.4.38)

by Fubini–Tonelli. The inner integral can be written in terms of the local Fourier transform of 𝛽,

∫
𝐹𝑣

𝜓𝑣(−𝑢)𝛽𝑣(𝑡𝑢) d𝑢 = |𝑡|−1
𝑣 ∫

𝐹𝑣

𝜓𝑣(−𝑢/𝑡)𝛽𝑣(𝑢) d𝑢 = |𝑡|−1
𝑣 𝛽𝑣(1/𝑡), (1.4.39)

by a change of variables. Replacing 𝑦 with 𝜈𝑦 then finishes the proof of (i).

For (ii), recall that the constant term of 𝐸 is given by 𝑓 + ℳ(𝑓), and that

𝑓((1
0

𝑥
1)(𝑦

0
0
1)) = 𝜒(𝑦)|𝑦|𝑠Γℝ(2𝑠 + 𝑘) ∫

𝔸𝐹 ,𝑓
|𝑡|2𝑠𝜌(𝑡)𝜑𝑓(0, 𝑡) d𝑡. (1.4.40)

Since 𝜑𝑓 = 𝛼 ⊗ 𝛽, this matches the first term of 𝑐0. For ℳ(𝑓), a change of variables shows that

ℳ(𝑓)((1
0

𝑥
1)(𝑦

0
0
1)) = ℳ(𝑓)((𝑦

0
0
1)), (1.4.41)
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To evaluate

ℳ(𝑓)((𝑦
0

0
1)) = 𝜒1(𝑦)|𝑦|𝑠 ∫

𝔸𝐹

∫
𝔸×

𝐹

|𝑡|2𝑠𝜌(𝑡)𝜑(𝑡𝑦, 𝑡𝑢)d×𝑡 d𝑢, (1.4.42)

perform a pair of substitutions 𝑡′ = 𝑡𝑦 and 𝑣 = 𝑢𝑦−1 to obtain

ℳ(𝑓)((𝑦
0

0
1)) = 𝜒2(𝑦)|𝑦|1−2𝑠 ∫

𝔸𝐹

∫
𝔸×

𝐹

|𝑡′|2𝑠𝜌(𝑡′)𝜑(𝑡′, 𝑣𝑡′)d×𝑡′ d𝑣. (1.4.43)

The non-archimedean factor of the integral is easily evaluated as before, and equals

𝛽(0) ∫
𝔸×

𝐹,𝑓

|𝑡|2𝑠−1𝜌(𝑡)𝛼(𝑡)d×𝑡. (1.4.44)

On the other hand, the double integral at an archimedean place is

Γℝ(2𝑠 + 𝑘) ∫
ℝ

(−𝑖 + 𝑢)𝑘(1 + 𝑢2)−𝑠+𝑘
2 d𝑢

= Γℝ(2𝑠 + 𝑘)Ξ(1; 𝑠 + 𝑘
2
, 𝑠 − 𝑘

2
; 0).

(1.4.45)

By Proposition 1.2, we have

Ξ(1; 𝑠 + 𝑘
2
, 𝑠 − 𝑘

2
; 0) = (2𝜋)2𝑠 Γ(2𝑠 − 1)

Γ(𝑠 + 𝑘
2)Γ(𝑠 − 𝑘

2)
(4𝜋)1−2𝑠, (1.4.46)

so the contribution to ℳ(𝑓) from each infinite place is

𝐶∞ ≔ 𝜋 ⋅ 22−2𝑠 Γℝ(2𝑠 + 𝑘)Γ(2𝑠 − 1)
Γ(𝑠 + 𝑘

2)Γ(𝑠 − 𝑘
2)

, (1.4.47)

and this gives the result. □

1.5 Hilbert modular forms with order level structure
The subgroup 𝐾𝒪 ≔ GL2(𝒪) ⊂ GL2(𝒪𝐹 ) is compact and open, and contains 𝐾(𝑁𝒪𝐹 ) ≔ {𝑔 ∈
GL2(𝒪𝐹 ) : 𝑔 ≡ 1 mod 𝑁𝒪𝐹 }. The congruence subgroup Γ𝒪 ≔ GL+

2 (𝐹) ∩ 𝐾𝒪 generalizes the one
considered in Section 1.2, where we assumed 𝐹  was real quadratic.

Definition 1.30 :  An adelic Hilbert modular form is said to have order level structure if it is invariant
under 𝐾𝒪 for some order 𝒪 ⊂ 𝐹 .

Order level Hilbert modular forms do not seem to appear in the literature, with one notable exception:
A proof of a conjecture in [Hut98] extending the work of Gross and Zagier on factorizations of norms
of singular moduli [GZ85] has been announced by Yoshinori Mizuno [Miz24]. In the announcement, a
certain Hilbert Eisenstein series with order level structure and genus character makes an appearance.

Remark 1.31 :  Varying the order 𝒪,

GL2(𝐹) \ GL2(𝔸𝐹 )/𝑍(ℝ)𝐾∞𝐾𝒪 (1.5.1)

gives an explicit class of Hilbert modular surfaces. It would be interesting to compute their invariants
systematically along the lines of [Ass+24].
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Eisenstein series with order level structure

Next we construct a certain adelic Eisenstein series which generalizes that of Section 1.2. As before,
let 𝒪 be an order of conductor 𝑁  in a real quadratic field 𝐹 .

Fix a Godement section 𝑓  as in Equation (1.4.2), where 𝜒1 and 𝜒2 are ring class characters, 𝜌 = 𝜒1𝜒−1
2 ,

and 𝜑 = 𝜑𝑓 ⊗ 𝜑∞, where 𝜑∞ is the standard weight 𝑘 Schwartz function, and

𝜑𝑓 = 1
Vol×(𝒪×)

⋅ 𝟙𝒪×𝒪. (1.5.2)

Note that 𝜑𝑓  is invariant under multiplication by 𝐾𝒪 on the right. Define

𝐸𝑘(𝑔, 𝒪) = 1
Γℝ(2𝑠 + 𝑘)

⋅
(
√

𝐷)
2𝑘−1

Γ(𝑘)2

(2𝜋𝑖)2𝑘 ⋅ 𝐸(𝑔, 𝑓) (1.5.3)

to be the renormalised Eisenstein series at 𝑠 = 𝑘
2 . The associated classical modular form is then a

Hilbert modular form of level SL2(𝒪) and parallel weight 𝑘. The function 𝐸𝑘(𝑔𝑧, 𝒪) has a Fourier
expansion which may be written in terms of the generalized divisor sums

𝜎𝑘−1(𝛼; 𝜒1, 𝜒2) ≔ ∑
𝔞⊂𝒪 proper,

𝛼𝒪⊂𝔞𝒪

𝜒1(𝔞−1𝛼𝒪 ∩ 𝐹)𝜒2(𝔞)Nm(𝔞)𝑘−1, (1.5.4)

given as follows:

Proposition 1.32 :  The Fourier expansion of 𝐸𝑘(𝑔𝑧, 𝒪) is given by

𝑦−𝑘
2 𝐸𝑘(𝑔𝑧, 𝒪) = 𝜀(𝜌)𝐿(1 − 𝑘, 𝜌)

4
− 𝛿𝑘=1

𝐿(1 − 𝑘, 𝜌)
4

+ ∑
𝜈∈𝔡−1

𝒪
𝜈≫0

𝜎𝑘−1(𝜈; 𝜒1, 𝜒2)𝑒2𝜋𝑖𝜈𝑧. (1.5.5)

In particular, for 𝜒1 = 1 and 𝜒 = 𝜒2, we recover the Eisenstein series in Section 1.2.

Proof :  First we consider the higher order coefficients 𝑐𝜈  in the Fourier expansion from Proposition 1.29.
For the archimedean factors, note that

Ξ(𝑦𝜈; 𝑘, 0; 1) = (2𝜋)𝑘

Γ(𝑘)
𝑒−2𝜋𝑦𝜈 , (1.5.6)

by Proposition 1.3. As 𝜓∞(𝜈𝑥)𝑒−2𝜋𝑦𝜈 = 𝑒2𝜋𝜈(𝑖𝑥−𝑦) = 𝑒2𝜋𝑖𝑧𝜈 , the archimedean contribution to 𝑐𝜈  when
𝜈 ≠ 0 is the product over the infinite places,

𝑦𝑘
2 ((2𝜋)𝑘

Γ(𝑘)
)

2

𝑒2𝜋𝑖𝜈𝑧 (1.5.7)

where we recall the conventional multi-index notation

𝜈𝑧 ≔ ∑
𝜎∈Σ𝐹

𝜎(𝜈)𝑧𝜎. (1.5.8)

We now turn to the non-archimedean contribution. Recall that 𝔡−1
𝒪  denotes the inverse different of 𝒪,

given by 𝔡−1
𝒪 ≔ {𝑦 ∈ 𝐹 : Tr(𝑥𝑦) ∈ ℤ for all 𝑥 ∈ 𝒪}. Similarly, we define 𝔡−1

ℓ  in terms of 𝒪ℓ, and set
𝔡 = ∏ℓ 𝔡ℓ. By character orthogonality,

∫
𝒪ℓ

𝜓(𝑥𝜉) d𝑥 = {Vol(𝒪ℓ) if 𝜉 ∈ 𝔡−1
ℓ ,

0 otherwise, (1.5.9)
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so

�̂�𝒪(𝜉) = ∏
ℓ

∫
𝐹⊗ℚℓ

𝟙𝒪ℓ
(𝑥)𝜓(𝑥𝜉) d𝑥 = 𝟙�̂�−1

𝒪
(𝜉) ⋅ Vol(𝒪). (1.5.10)

Since [𝐹 : ℚ] = 2, the different 𝔡 is principal, and generated by (
√

𝐷), where 𝐷 is the discriminant
of 𝒪. The finite-place contribution

∫
𝔸×

𝐹,𝑓

|𝑡|𝑘−1𝜌𝑓(𝑡)𝟙𝒪(𝑡𝜈)𝟙�̂�−1
𝒪

(𝑡−1)d×𝑡 (1.5.11)

splits as a product over places of ℚ since 𝒪 does, and in fact over places of 𝐹  not dividing 𝑁 . The
factor corresponding to a prime ℓ is given by

∫
𝐹×

ℓ

|𝑡|𝑘−1𝜌ℓ(𝑡)𝟙𝒪ℓ
(𝑡𝜈)𝟙𝔡−1

ℓ
(𝑡−1)d×𝑡, (1.5.12)

and we perform the change of variables 𝑡 ↦ 𝑡−1 which results in

∫
𝐹×

ℓ

|𝑡|1−𝑘𝜌ℓ(𝑡)𝟙𝒪ℓ
(𝑡−1𝜈)𝟙𝔡−1

ℓ
(𝑡)d×𝑡. (1.5.13)

Since the integrand is trivial on 𝒪×
ℓ  and has valuation bounded above and below, we may rewrite it as

a finite sum

Vol× 𝒪×
ℓ ⋅ ∑

𝛼ℓ∈𝔡−1
ℓ /𝒪×

ℓ
𝜈/𝛼ℓ∈𝒪ℓ

|𝛼|1−𝑘
ℓ 𝜌(𝛼). (1.5.14)

Note that we have normalised 𝜑𝑓  precisely to cancel out the volume factor. Now, since |𝛼|−1
ℓ =

Nm(𝛼𝒪 ∩ 𝐹), viewing 𝛼 as the finite idele concentrated at places above ℓ, we may rewrite this in
terms of the adelic divisor sum,

∑
𝛼ℓ∈𝔡−1

ℓ /𝒪×
ℓ

𝜈/𝛼ℓ∈𝒪ℓ

|𝛼|1−𝑘𝜌(𝛼) ∑
𝔞⊂𝔡−1

𝒪 proper,
𝜈𝒪⊂𝔞𝒪

𝜌(𝔞)Nm(𝔞)𝑘−1 ≕ �̃�𝑘−1(𝜈, 𝜌) (1.5.15)

appearing in [Gar90, p. 125]. Note that this expression is multiplicative in the finite idele 𝛼, and by a
straightforward computation is related to 𝜎 by the formula

𝜎𝑘−1(𝛼
√

𝐷; 𝜒1, 𝜒2) = −(−𝐷)𝑘−1𝜒1(𝛼)�̃�𝑘−1(𝛼, 𝜌). (1.5.16)

For 𝛼 = (𝛼𝑓 , 𝛼∞) = 𝜈, we note that 𝜒1,𝑓(𝜈) = 𝜒1,∞(𝜈) = 1 as 𝜈 ≫ 0. Thus we get the following
expression for the non-archimedean factor,

(1.5.11) = (−1)(−𝐷)1−𝑘𝜒1,𝑓(𝛼)𝜎𝑘−1(𝜈
√

𝐷; 𝜒1, 𝜒2). (1.5.17)

All proper 𝒪-ideals 𝔞 dividing 𝜈
√

𝐷 appear in the sum by the bijection in Proposition 1.5 between
invertible 𝒪-ideals and tuples of locally principal 𝒪ℓ-lattices. As the local volume factors from the
Fourier transform of 𝛽 multiply to Vol(𝒪) = 𝐷−1/2, we conclude that 𝜈-th coefficent of 𝐸𝑘(𝑔𝑧, 𝒪) is
given by

𝑐𝜈(𝐸𝑘(𝑔𝑧, 𝒪))(𝑦
0

𝑥
1) = 𝑦𝑘

2
(2𝜋𝑖)2𝑘

(
√

𝐷)
2𝑘−1

Γ(𝑘)2
𝜎𝑘−1(𝜈, 𝜌)𝑒2𝜋𝑖𝜈𝑧. (1.5.18)
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Now we compute the constant term. By Proposition 1.29 it is a sum of two terms, each of which is a
product of Γ-factors and local integrals. The first integral is

1
Vol× 𝒪×

∫
𝔸×

𝐹,𝑓

|𝑡|2𝑠𝜌(𝑡)𝟙𝒪(𝑡)d×𝑡. (1.5.19)

This factors over rational primes ℓ, and if ℓ ∤ 𝑁 , further over places of 𝑣. We first suppose ℓ ∤ 𝑁 , and
fix a place 𝑣 ∣ ℓ of 𝐹 . Then 𝜌𝑣 is unramified at 𝑣, and the corresponding local integral is

∫
𝒪𝐹𝑣

|𝑡|2𝑠
𝑣 𝜌𝑣(𝑡)d×𝑡 = ∑

∞

𝑗=0
𝑞−2𝑠𝑗
𝑣 𝜌𝑣(𝜛𝑣)

𝑗 ∫
𝒪𝐹×𝑣

d×𝑡 = 𝑞−𝑣(𝔡𝒪)
2𝑣 ⋅ 1

1 − 𝜌(𝜛𝑣)𝑞−2𝑠
𝑣

, (1.5.20)

by our normalization of the Haar measure. If ℓ ∣ 𝑁 , then the computation is more complicated: recall
from Section 1.1 that the étale algebra 𝐹ℓ = 𝐹 ⊗ℚ ℚℓ contains the non-maximal order 𝒪ℓ = 𝒪 ⊗ ℤℓ.
Suppose first ℓ splits in 𝐹 , and fix places 𝑣 and 𝑣′ above ℓ. For 𝑗, 𝑗′ ∈ ℕ, define

𝐷(𝑗, 𝑗′) ≔ 𝒪ℓ ∩ (𝜛𝑗
𝑣𝒪𝐹×

𝑣
⊕ 𝜛𝑗′

𝑣′𝒪𝐹×
𝑣′

) ⊂ 𝐹ℓ (1.5.21)

so that

∫
𝒪ℓ

|𝑡|2𝑠
ℓ 𝜌ℓ(𝑡)d×𝑡 = ∑

∞

𝑗,𝑗′=0
𝑞−2𝑠
𝑣 ∫

𝐷(𝑗,𝑗′)
𝜌ℓ(𝑡)d×𝑡. (1.5.22)

We note the following:
(i) If 𝑗 = 𝑗′ = 0, then 𝐷(𝑗, 𝑗′) = 𝒪×

ℓ .
(ii) If 𝑗 ≥ 𝑣(𝑁) and 𝑗′ ≥ 𝑣′(𝑁), then 𝐷(𝑗, 𝑗′) = 𝜛𝑗

𝑣𝒪𝐹×
𝑣

⊕ 𝜛𝑗′

𝑣′𝒪𝐹×
𝑣′

, and so

∫
𝐷(𝑗,𝑗′)

𝜌ℓ(𝑡)d× = 𝜌(𝜛𝑗
𝑣𝜛

𝑗′

𝑣′) ∫
𝒪𝐹×𝑣 ⊕𝒪𝐹×

𝑣′

𝜌ℓ(𝑡)d×𝑡. (1.5.23)

By character orthogonality, the integral is identically 0.
(iii) If 𝑗 ≥ 𝑣(𝑁) > 𝑗′, then as 𝒪ℓ = ℤℓ + 𝑁(𝒪𝐹𝑣

⊕ 𝒪𝐹𝑣′), we may write 𝑥 ∈ 𝐷(𝑗, 𝑗′) as 𝑥 = 𝑎 +
𝑁(𝑏, 𝑏′) for some 𝑎 ∈ ℤℓ, 𝑏 ∈ 𝒪𝐹𝑣

 and 𝑏′ ∈ 𝒪𝐹𝑣′ . Then 𝑣(𝑎) ≥ 𝑣(𝑁) so 𝑁  divides 𝑥, hence
𝑣′(𝑥) ≥ 𝑣(𝑁). It follows that 𝐷(𝑗, 𝑗′) = ∅.

(iv) If 0 < 𝑗 ≤ 𝑗′ < 𝑣(𝑁), then by similar reasoning we have 𝑗 = 𝑗′. Hence we may write 𝑥 = ℓ𝑗𝑦 for
some 𝑦 ∈ 𝒪′

ℓ, where �̃�ℓ denotes the local order of conductor 𝑁/ℓ𝑗. Then a change of variables
gives

∫
𝐷(𝑗,𝑗′)

𝜌ℓ(𝑡)d×𝑡 = 𝜌(ℓ𝑗) ∫
𝒪×

ℓ

𝜌ℓ(𝑡)d×𝑡, (1.5.24)

which again vanishes by character orthogonality, as we assume 𝜌 is primitive.

In summary, all the terms except 𝑗 = 𝑗′ = 0 vanish, and so

(1.5.22) = Vol×(𝒪×
ℓ ), (1.5.25)

since 𝜌 is trivial on 𝒪×
ℓ .

If ℓ is inert or ramified in 𝐹 , then write ℓ = 𝜛𝑗
ℓ and note that for 𝑗 ≥ 𝑣(𝑁),

∫
𝒪ℓ∩𝜛𝑗

𝑣𝒪𝐹×𝑣

𝜌(𝑡)d×𝑡 = 0, (1.5.26)
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as in the split case. When ℓ is ramified, say ℓ = 𝜛2
𝑣 , then for odd 0 < 𝑗 ≤ 𝑣(𝑁), 𝒪ℓ ∩ 𝜛𝑗

𝑣𝒪𝐹×
𝑣

= ∅. On
the other hand, when 𝑗 is even, 𝜛𝑗

𝑣 = ℓ𝑗/2, and we get vanishing by the argument in (iv). Finally, the
term 𝑗 = 0 gives Vol× 𝒪×

ℓ  as before. Therefore

(1.5.22) = Vol×(𝒪×
ℓ ), (1.5.27)

regardless of the splitting behaviour of ℓ, and so the first part of the constant term of 𝐸𝑘(𝑔𝑧, 𝒪) equals

𝑦𝑠 ⋅ 𝐿(2𝑠, 𝜌) ⋅ Γℝ(2𝑠 + 𝑘)2. (1.5.28)

Taking 𝑠 = 𝑘
2 , multiplying by the normalizing factor and applying the functional equation in Equa-

tion (1.2.25) then gives

𝐿(1 − 𝑘, 𝜌) ⋅ 𝜀(𝜌)
4

, (1.5.29)

as claimed. The second part is computed similarly; since 𝛽(0) contributes Vol(𝒪) = 𝐷−1, this equals

𝑦1−2𝑠𝐷−1
2 𝐿(2𝑠 − 1, 𝜌) ⋅ 𝐶∞. (1.5.30)

At 𝑠 = 𝑘
2 , this vanishes unless 𝑘 = 1 as in the proof of Corollary 1.13. When 𝑘 = 1 we find

𝐶2
∞

Γℝ(2𝑠 + 𝑘)2 ⋅
(
√

𝐷)
2𝑘−1

Γ(𝑘)2

(2𝜋𝑖)2𝑘 = −1
4
√

𝐷, (1.5.31)

and so the second part of the constant term equals −𝛿𝑘=1
𝐿(0,𝜌)

4  as required.

□

Fix an unramified prime 𝑝 ∤ 𝑁 . Since 𝐾𝒪 is spherical at all places above 𝑝, Proposition 1.21 implies
that 𝐸𝑘(𝑔, 𝒪) is an eigenfunction of 𝑇𝔭 for any prime 𝔭 ∣ 𝑝𝒪𝐹 , with eigenvalue 𝑎𝔭 ≔ 𝜒1(𝔭) +
𝜒2(𝔭)Nm(𝔭)𝑘−1. Since

𝑋2 − 𝑎𝔭𝑋 + 𝜒1𝜒2(𝔭)Nm(𝔭)𝑘−1 = (𝑋 − 𝜒2(𝔭))(𝑋 − 𝜒1(𝔭)Nm(𝔭)𝑘−1), (1.5.32)

the two possible 𝔭-refinements correspond to 𝛼𝔭 ≔ 𝜒1(𝔭) and 𝛽𝔭 ≔ 𝜒2(𝔭)Nm(𝔭)𝑘−1. We then define

𝐸(𝑝)
𝑘 (𝑔, 𝒪) ≔ ∏

𝔭∣(𝑝)
(1 − 𝛼𝔭𝑉 −

𝔭 )𝐸𝑘(𝑔, 𝒪), (1.5.33)

as in Equation (1.3.15).

Proposition 1.33 :  The higher-order Fourier coefficients of 𝐸(𝑝)
𝑘 (𝑔, 𝒪) are given by

𝐶(𝔞, 𝐸(𝑝)
𝑘 ) = ∑

𝔟∣𝔞
(𝔞,𝑝)=1

𝜒1(𝔟/𝔞)𝜒2(𝔟)Nm(𝔟)𝑘−1. (1.5.34)

Proof :  Since the Fourier coefficients of 𝐸(𝑝)
𝑘  factor, it suffices to show that

𝐶(𝐸(𝑝)
𝑘 , 𝔭𝑗) = 𝜒1(𝔭)𝑗 (1.5.35)

whenever 𝔭 ∣ 𝑝. But this follows from [BH21, Proposition 3.4.4]. □

The constant term will be computed later by identifying 𝐸(𝑝)
𝒪  with the weight 1 specialisation of a 𝑝-

adic Eisenstein family.
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Diagonal restrictions

In this section, we consider the natural inclusion GL2(𝔸ℚ) → GL2(𝔸𝐹 ), which in particular induces
the diagonal map GL2(ℝ) → GL2(𝐹 ⊗ ℝ), and hence a map Δ : 𝔥 → 𝔥Σ𝐹 . Pulling back automorphic
forms under the first inclusion amounts to evaluating the 𝜆 = 1-component of a classical Hilbert
modular form at the diagonal argument (𝑧, …, 𝑧). If Φ is an adelic Hilbert modular form, we write
Δ∗Φ for the corresponding automorphic form of GL2(𝔸ℚ). If Φ has weight 𝑘 = (𝑘𝜎)𝜎 and level 𝐾𝑓 ⊂
GL2(𝒪𝐹 ), then Δ∗Φ has weight ∑𝜎 𝑘𝜎 and level 𝐾𝑓 ∩ GL2(ℤ̂).

Remark 1.34 :  From an automorphic point of view, there is no particular choice involved in this
restriction. However, for a classical Hilbert modular form (Φ𝜆), one can consider the diagonal restric-
tions of any of the components Φ𝜆. If Φ𝜆(𝑔) = Φ(𝑡𝜆𝑔) for some adelic Hilbert modular form Φ, then
one can view Δ∗Φ𝜆 as Φ restricted to the image of the twisted embedding Δ𝜆 : GL2(𝔸ℚ) → GL2(𝔸𝐹 )
given by 𝑔 ↦ 𝑡𝜆𝑔. While this can often be interesting, we will restrict our attention to the case 𝜆 = 1.

Returning to our 𝑝-refined Eisenstein series, there is a qualitative difference between the cases 𝑝 inert
and 𝑝 split:

Proposition 1.35 :  Let 𝑘 = (1, 1), and suppose 𝑝 is inert in 𝐹 . Then the diagonal restriction
Δ∗𝐸(𝑝)

𝑘 (𝑔𝑧, 𝒪) vanishes identically.

Proof :  Note that Δ∗𝐸(𝑝)
𝑘  defines a modular form for GL2(ℚ) which is right invariant under GL2(ℤ̂)

and weight 2. Since 𝑝 is inert, the operator (1 − 𝑉 −
𝑝 ) agrees with 𝑝-refinement on GL2(ℚ), and

commutes with diagonal restriction. In other words, Δ∗𝐸𝑘 is the 𝑝-refinement of a modular form of
level 1 and weight 2, hence 0. □

On the other hand, when 𝑝 is split, the diagonal restriction of the 𝑝-refinement does not automatically
vanish as 𝑉 −

𝑣  is not an operator on GL2(ℚ)-automorphic forms. In fact, as we show in Theorem 2.16,
in this case Δ∗𝐸(𝑝)

𝑘  has an interesting topological interpretation.

1.6 A Λ-adic Eisenstein family
References: [DDP11, §3], [Wil88, §1]

Our next goal is to show that the weight (1, 1) Eisenstein series, suitably modified, naturally lives in
a 𝑝-adic family. This family is a crucial ingredient in the proof of Theorem 2.23.

In this section, we assume that the rational prime 𝑝 is inert in the real quadratic field 𝐹 . Let 𝐸 be a
finite extension of ℚ𝑝, and define the Iwasawa algebra

Λ ≔ 𝒪𝐸⟦ℤ×
𝑝 ⟧ ≔ lim

⟵
𝑛

ℤ𝑝[ℤ×
𝑝 /(1 + 𝑝𝑛ℤ𝑝)] (1.6.1)

where each term in the limit is a standard group algebra.

The 𝑝-adic Teichmüller character 𝜔 is the ℚ𝑝-valued character satisfying 𝜔(𝔞) ≡ Nm(𝔞) mod 𝑞, where
𝑞 = 𝑝 when 𝑝 is odd and 𝑞 = 4 otherwise. Furthermore, the function ⟨⋅⟩ : ℤ×

𝑝 → 1 + 𝑝ℤ𝑝 defined by
⟨𝑥⟩ ≔ 𝑥𝜔(𝑥)−1 induces a map ℤ×

𝑝 → Λ. For each (𝑘, 𝑝) = 1, the map 𝑥 ↦ 𝑥𝑘 extends by continuity
to a map ℤ×

𝑝 → ℤ×
𝑝 , and we denote its linear extension to Λ by 𝜈𝑘 : Λ → ℤ×

𝑝 . We call this the weight
𝑘 specialisation.

The 𝑝-adic 𝐿-function associated to a Hecke character 𝜒, constructed by Deligne and Ribet [DR80], is
a 𝑝-adic analytic function interpolating classical 𝐿-values in the sense that

𝐿𝑝(1 − 𝑘, 𝜒) = 𝐿(1 − 𝑘, 𝜒𝜔−𝑘)(1 − 𝜒𝜔−𝑘(𝑝)Nm(𝑝)𝑘−1), (1.6.2)
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for all 𝑘 ≥ 1. Formally, this gives rise to a pseudo-measure on ℤ×
𝑝 , and hence an element of Frac(Λ),

the fraction field of Λ.

Recall from Section 1.3 the notion of Fourier coefficients 𝐶(𝔞, Φ).

Definition 1.36 :  A Λ-adic family ℱ of Hilbert modular forms with level SL2(𝒪) is a collection of
elements

{𝐶(𝔞, ℱ) ∈ Λ for all 𝔞 ≤ 𝒪 proper,
𝐶𝜆(0, ℱ) ∈ Λ for all 𝜆 ∈ Cl+ 𝒪, (1.6.3)

such that for all but finitely many integers 𝑘, the collection 𝜈𝑘(𝐶(𝔞, ℱ)) and 𝜈𝑘(𝐶𝜆(0, ℱ)) coincides
with the coefficients of a component of a Hilbert modular form of level SL2(𝒪) and parallel weight 𝑘.
We write ℳ(SL2(𝒪)) for the Λ-module of all such forms.

To construct a Λ-adic Eisenstein family, we will modify the Eisenstein series considered above with a
𝑝-adic character. Suppose 𝜔 is a ring class character unramified away from 𝑝, with conductor 𝑐𝑣 > 0
at each place dividing 𝑝. To accommodate the level, we change the Schwartz function at each place 𝑣
dividing 𝑝: set 𝜑(𝑝)

𝑣 (𝑥1, 𝑥2) ≔ 𝛼(𝑝)
𝑣 (𝑥1) × 𝛽(𝑝)

𝑣 (𝑥2) where

𝛼(𝑝)
𝑣 (𝑥1) ≔ 𝟙𝒪𝑣

(𝑥1) and 𝛽(𝑝)
𝑣 (𝑥2) ≔ 1

Vol×(1 + 𝔭𝑐𝑣𝑣 )
𝟙𝜛−𝑐𝑣𝒪𝑣

(𝑥2)𝜓𝑣(𝑥2), (1.6.4)

where 𝜓𝑣 is the fixed local additive character. As before, we set

𝜑(𝑝)
𝑓 ≔ ⨂

𝑣∣𝑝
𝜑(𝑝)

𝑣 ⊗ ⨂′

𝑣∤𝑝
𝟙𝒪𝑣×𝒪𝑣

, (1.6.5)

and 𝜑(𝑝) ≔ 𝜑∞ ⊗ 𝜑(𝑝)
𝑓 .

Lemma 1.37 :  Suppose 𝑣 is a place of 𝐹  dividing 𝑝. Then the local Fourier transform of 𝛽(𝑝)
𝑣  is given by

𝛽(𝑝)
𝑣 (𝑡) = 𝑞𝑐𝑣𝑣

Vol×(1 + 𝔭𝑐𝑣𝑣 )
𝟙1+𝜛−𝑐𝑣 (𝑡). (1.6.6)

Proof :  We compute

Vol×(1 + 𝔭𝑐𝑣𝑣 ) ⋅ 𝛽(𝑝)
𝑣 (𝑡) = ∫

𝜛−𝑐𝑣𝑣 𝒪𝑣

𝜓𝑣(𝑢(1 − 𝑡)) d𝑢

= 𝑞𝑐𝑣𝑣 ∫
𝒪𝑣

𝜓𝑣(𝑢(1 − 𝑡)𝜛−𝑐) d𝑢.
(1.6.7)

If 𝑧 ∈ 𝐹×
𝑣 , then 𝜓𝑧(𝑢) ≔ 𝜓𝑣(𝑧𝑢) is also an additive character of 𝐹 . For any non-zero 𝛼 ∈ 𝒪𝑣,

(𝜓𝑧(𝛼) − 1) ∫
𝒪𝑣

𝜓𝑧(𝑢) d𝑢 = 0, (1.6.8)

by the change of variables 𝑢 ↦ 𝑢 + 𝛼. Therefore

∫
𝒪𝑣

𝜓𝑧(𝑢) d𝑢 = 0 (1.6.9)

unless 𝜓𝑧(𝛼) = 0 for all 𝛼 ∈ 𝒪𝑣 − {0}, in which case

∫
𝒪𝑣

𝜓𝑧(𝑢) d𝑢 = Vol+(𝒪𝑣) = 1, (1.6.10)
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as 𝑣 is unramified by assumption. Applying this with 𝑧 = (1 − 𝑡)𝜛−𝑐, and noting that (1 − 𝑡)𝜛−𝑐𝑣 ∈
𝒪𝑣 if and only if 𝑡 ∈ 1 + 𝜛𝑣𝒪𝑣, we obtain the result. □

Given a pair of ring class characters 𝜒1 and 𝜒2, let 𝑓  be the Godement section associated with 𝜑(𝑝),
𝜒1 and 𝜒2𝜔𝑘−1, where 𝜔 is the 𝑝-adic Teichmüller character. As before, write 𝜌 ≔ 𝜒1𝜒−1

2 𝜔𝑘−1. The
associated classical Eisenstein series we denote by 𝐸𝑘(𝜒1, 𝜒2𝜔𝑘−1); here we interpret 𝜒2𝜔𝑘−1 to have
conductor 𝑝 even when 𝑘 = 1. Finally, define the 𝑝-depleted divisor sums

𝜎(𝑝)
𝑘−1(𝛼; 𝜒1, 𝜒2) ≔ ∑

𝔞⊂𝒪 proper,
𝛼𝒪⊂𝔞𝒪
(𝔞,𝑝)=1

𝜒1(𝔞−1𝛼𝒪 ∩ 𝐹)𝜒2(𝔞)Nm(𝔞)𝑘−1. (1.6.11)

Proposition 1.38 :  The Eisenstein series 𝐸𝑘(𝜒1, 𝜒2𝜔1−𝑘) has Fourier expansion

𝐸𝑘(𝜒1, 𝜒2𝜔𝑘−1) = 𝜀 ⋅
𝐿𝑝(1 − 𝑘, 𝜒−1

1 𝜒2)
4

+ ∑
𝜈∈𝔡−1

𝒪
𝜈≫0

𝜎(𝑝)
𝑘−1(𝜈; 𝜒1, 𝜒2𝜔1−𝑘), (1.6.12)

where 𝜀 = 𝜀(𝜒1𝜒−1
2 ).

Proof :  We begin with the higher-order coefficients. The computation for 𝑣 ∤ 𝑝 runs as in the proof of
Proposition 1.32. Suppose 𝑣 ∣ 𝑝. The local contribution at 𝑣 to the 𝜈-th Fourier coefficient is given by

∫
𝐹×

𝑣

|𝑡|2𝑠−1𝜌(𝑡)𝛼(𝑡𝜈)𝛽(𝑡−1)d×𝑡 = 1
Vol×(1 + 𝔭𝑐𝑣𝑣 )

∫
1+𝔭𝑐

𝑣

𝜌(𝑡)𝟙𝒪𝑣
(𝑡𝜈)d×𝑡 = 𝟙𝒪𝑣

(𝜈), (1.6.13)

since 𝜌 is trivial on 1 + 𝔭𝑐𝑣𝑣 . By the argument in the proof of Proposition  1.32, we find that 𝜈-th
coefficient is given by

𝜎(𝑝)
𝑘−1(𝜈; 𝜒1, 𝜒2𝜔𝑘−1), (1.6.14)

as required.

Next we turn to the constant term. At places 𝑣 ∤ 𝑝, this proceeds as before. When 𝑣 ∣ 𝑝, we have

𝑓𝑣(1) = 1
Vol×(1 + 𝔭𝑐𝑣𝑣 )

𝛼(0) ∫
𝔭−𝑐𝑣𝑣

|𝑡|2𝑠𝜌(𝑡)𝜓𝑣(𝑡)d×𝑡. (1.6.15)

Using [Sch02, Lemma 1.1.1], this equals

1
Vol×(1 + 𝔭𝑐𝑣𝑣 )

∑
∞

𝑗=−𝑐
𝑞−2𝑗𝑠
𝑣 ∫

𝜛𝑗
𝑣×𝒪𝐹×𝑣

𝜌(𝑡)𝜓(𝑡)d×𝑡 = 𝜀(0, 𝜌, 𝜓), (1.6.16)

where 𝜀 is the constant in the functional equation of 𝐿(𝑠, 𝜌). Since 𝛽(0) = 0, the contribution from
ℳ(𝑓) to the constant term is identically 0. We conclude that

𝐶1(0, 𝐸𝑘(𝜒1, 𝜒2𝜔1−𝑘)) = 𝜀(𝜒1𝜒−1
2 )

𝐿𝑝(1 − 𝑘, 𝜒−1
1 , 𝜒2)

4
. (1.6.17)

□

Now let 𝐸 be a finite extension of ℚ𝑝 containing all the coefficients of 𝐸, and let Λ = 𝒪𝐸[[ℤ×
𝑝 ]] be

the Iwasawa algebra over 𝒪𝐸 .

Corollary 1.39 :  There is a family ℰ(𝜒1, 𝜒2) ∈ ℳ(SL2(𝒪)) ⊗Λ Frac(Λ) whose weight 𝑘 specialisation
is given by
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𝜈𝑘(ℰ(𝜒1, 𝜒2)) = 𝐸𝑘(𝜒1, 𝜒2𝜔1−𝑘). (1.6.18)

Remark 1.40 :  The obstruction to ℰ defining a Λ-adic form in ℳ(SL2(𝒪)) comes from the constant
term. One can find an integrality criterion in the case of even characters in [Wil88, Proposition 1.3.1].

We adopt the shorthand ℰ𝑘(𝜒1, 𝜒2) ≔ 𝜈𝑘(ℰ(𝜒1, 𝜒2)) for the weight 𝑘 specialisation.

Proof :  For any 𝑘 ∈ ℤ×
𝑝  and 𝑎 ∈ ℤ×

𝑝 , the number ⟨𝑎⟩𝑘 is an element of Λ. Since (Nm(𝔞), 𝑝) = 1 when
(𝔞, 𝑝) = 1, it follows that the coefficients

𝑐(𝔪, 𝐸𝑘(𝜒1, 𝜒2𝜔1−𝑘)) = ∑
𝔞⊂𝔪 proper

(𝔞,𝑝)=1

𝜒1(
𝔪
𝔞

)𝜒2(𝔞)⟨Nm(𝔞)⟩𝑘−1 (1.6.19)

also lie in Λ, being finite 𝒪𝐸-linear combinations of such elements. Fix a class 𝜆 ∈ Cl+ 𝒪, and identify
it with a finite idele 𝜆 ∈ 𝔸𝐹  which is 1 at infinity. To find the constant term of the 𝜆-component of
the classical Eisenstein series associated to 𝐸, note that

𝐸((𝜆
0

0
1)𝑔𝑧, 𝑓) = 𝜒1(𝜆)|𝜆|𝑘

2 𝐸(𝑔𝑧, 𝑓). (1.6.20)

By our normalization of constant terms, we conclude that the constant term of the 𝜆-component of
𝐸𝑘(𝜒1, 𝜒2𝜔1−𝑘) is

𝜀 ⋅ 𝜒1(𝜆)
𝐿𝑝(1 − 𝑘, 𝜒−1

1 𝜒2)
4

. (1.6.21)

These have 𝑝-adic interpolation by the construction of 𝑝-adic 𝐿-functions. □

By comparing the higher-order coefficients, it is clear that for the weight 1 specialisation, we have
𝜈1(ℰ(𝜒1, 𝜒2)) = 𝐸(𝑝)

1 , and in particular, the constant terms agree.

Remark 1.41 :  It is also possible to construct Eisenstein families attached to characters with additional
ramification away from 𝑝, by choosing suitable Schwartz functions at primes dividing their conductors.
Examples of such may be found in [HY22, §3.2]. For our purposes, ring class characters suffice.
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2 Intersections of real quadratic geodesics
In this section, we give a brief overview of indefinite binary quadratic forms, and describe how to
compute the generating series ∑∞

𝑛=1⟨𝐼, 𝑇𝑛𝐶𝜏⟩𝑞𝑛 explicitly. Recall our setup: 𝐹  is a real quadratic
field, and 𝒪 ⊂ 𝐹  is an order of conductor 𝑁 ∈ ℕ. When 𝐷0 is the discriminant of 𝐹 , the discriminant
of 𝒪 equals 𝐷 ≔ 𝑁2𝐷0.

2.1 Preliminaries on indefinite binary quadratic forms
References: [Cox11, §7], [BV07].

Let 𝑄(𝑥, 𝑦) = 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 be an indefinite binary quadratic form with discriminant 𝐷 = 𝐵2 −
4𝐴𝐶 . We can order the roots of 𝑄(𝑥, 1) by

𝜏 = −𝐵 +
√

𝐷
2𝐴

, 𝜏 ′ = −𝐵 −
√

𝐷
2𝐴

. (2.1.1)

Conversely, given a real quadratic point 𝜏 ∈ ℝ, let 𝑄𝜏  be the primitive binary quadratic form whose
first root is 𝜏 . Recall that 𝑄 is primitive if (𝐴, 𝐵, 𝐶) = 1.

Quadratic forms admit a natural right action of the monoid Mat2(ℤ) − {0}, the set of 2-by-2-matrices
with integer coefficients, defined by

𝑄 ∘ 𝛾 ≔ 𝑄(𝑎𝑥 + 𝑏𝑦, 𝑐𝑥 + 𝑑𝑦) for 𝛾 = (𝑎
𝑐

𝑏
𝑑) ∈ Mat2(ℤ). (2.1.2)

If we view 𝑄 as a function on row vectors (𝑥
𝑦), then (𝑄 ∘ 𝛾)(𝑥

𝑦) = 𝑄(𝛾 ⋅ (𝑥
𝑦)). When det 𝛾 = 1, the

discriminant of 𝑄 is preserved.

Proposition 2.1 ([BV07] Corollary 8.4.7) :  The map

𝑄(𝑥, 𝑦) ≔ 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 ↦ 𝔞𝑄 ≔ ℤ𝑎 + ℤ𝑏 +
√

𝐷
2

(2.1.3)

induces a bijection between (1
0

∗
1)-orbits of quadratic forms of discriminant 𝐷 and proper integral 𝒪

-ideals.

More generally, any fractional 𝒪-ideal can be written as 𝑞 ⋅ 𝔞𝑄 for some 𝑞 ∈ ℚ and some indefinite
binary quadratic form 𝑄 of discriminant 𝐷. An explicit inverse for the above map is given in [BV07,
Proposition 8.4.8].

For a fixed discriminant 𝐷, the number of orbits of quadratic forms of discriminant 𝐷 under SL2(ℤ) is
finite, and these form a group with respect to Gauss composition. This is the form class group, denoted
by Cl+ 𝐷.

Proposition 2.2 ([BV07, §9.3.3]) :  The map in Equation (2.1.3) induces an isomorphism Cl+ 𝐷 →∼ Cl+ 𝒪.

Fix a congruence subgroup Γ ⊂ SL2(ℤ), and let 𝑌Γ ≔ Γ \ 𝔥 be the associated open modular curve.
We also fix an indefinite quadratic form 𝑄 with roots 𝜏  and 𝜏 ′. These determine a geodesic in 𝔥 which
is preserved by the set SL2(ℤ)[𝜏] consisting of elements which fix 𝑄. More generally, set Γ[𝜏] ≔ {𝛾 ∈
Γ : 𝑄 ∘ 𝛾 = 𝑄}.

Lemma 2.3 :  The group Γ[𝜏] is abelian of rank at most 1, and its torsion subgroup is {±1} ∩ Γ.

Proof :  As Γ[𝜏] ⊂ SL2(ℤ)[𝜏], the first claim follows from showing that SL2(ℤ)[𝜏] has rank 1. Consider
the lattice ℤ2 with quadratic form 𝑄, and let 𝑉 = ℤ2 ⊗ ℚ be the associated rational quadratic space.
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Since 𝑉 ⊗ ℝ is isometric to ℝ2 with the quadratic form 𝑄′(𝑥, 𝑦) = 𝑥𝑦, we have that SO𝑉 (ℝ) ≅ ℝ×,
and SL2(ℤ)[𝜏] can be identified with the stabiliser of the lattice ℤ2, which is a discrete subgroup. But
the only discrete subgroups of ℝ× are given by 𝜀ℤ and 𝜀ℤ × {±1} for some 𝜀 ∈ ℝ×.

To prove the second claim, one can check by hand that the only finite order matrices in SL2(ℤ)
stabilising 𝑄 are ±1. □

A more explicit proof of the above lemma is found using the bijection in Proposition 2.1, in which one
finds that 𝜀 corresponds to the fundamental unit of 𝒪𝜏 .

Definition 2.4 :  Let (𝑢, 𝑣) be a fundamental solution to the Pell equation 𝑢2 − 𝐷𝑣2 = 1, and write
𝑄(𝑥, 𝑦) = 𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2. Then the matrix

𝛾𝜏 = (𝑢 − 𝐵𝑣
2𝐴𝑣

−2𝐶𝑣
𝑢 + 𝐵𝑣) (2.1.4)

is called the automorph of 𝑄.

Given an element 𝛾 ∈ Γ and a point 𝑧 ∈ 𝔥, the hyperbolic geodesic between 𝑧 and 𝛾𝑧 maps to a
closed loop in 𝑌Γ. This defines a map Γ → 𝐻1(𝑌Γ, ℤ), which depends on 𝑧. Let geo(𝜏) ⊂ 𝔥 denote the
oriented geodesic from 𝜏  to 𝜏 ′.

Definition 2.5 :  Fix a real quadratic point 𝜏  such that 𝛾𝜏 ∈ Γ ≤ SL2(ℤ), and let 𝑧 ∈ geo(𝜏). The
geodesic cycle 𝐶𝜏  associated to 𝜏  in 𝑌Γ is the image of [𝑧, 𝛾𝜏𝑧] in 𝐻1(𝑌Γ, ℤ).

Lemma 2.6 :  The cycle 𝐶𝜏  does not depend on the choice of 𝑧 ∈ geo(𝜏).

Proof :  Suppose 𝑧, 𝑧′ ∈ geo(𝜏), and fix 𝛾 ∈ SL2(ℝ) such that 𝛾𝑧 = 𝑧′. Then 𝛾 preserves the geodesic
geo(𝜏), so [𝑧′, 𝛾𝜏𝑧′] = 𝛾 ⋅ [𝑧, 𝛾𝜏𝑧], as SL2(ℝ)[𝜏] is abelian by the argument of Lemma  2.3. In the
quotient, 𝛾 preserves the loop 𝐶𝜏 ⊂ 𝑌Γ, and this proves the claim. □

Remark 2.7 :  It is often conceptually easier to prove these kinds of statements by viewing 𝐶𝜏  as the
symmetric space of a torus Resℚ(𝜏)

ℚ 𝔾𝑚 embedded inside that of GL2.

From Definition 2.4 it is clear that when 𝑀 ∣ 𝐴, we have 𝛾𝜏 ∈ Γ0(𝑀). In this case the SL2(ℤ)-orbit
of 𝑄 breaks into two Γ0(𝑀)-orbits distinguished by 𝐵 mod 2𝑀 : note that 𝑏(𝑄 ∘ 𝛾) ≡ 𝐵 mod 𝑀  for
any 𝛾 ∈ Γ0(𝑀).

Proposition 2.8 ([Dar94, Proposition 1.4]) :  Suppose there exists 𝐵 ∈ ℤ such that 𝐵2 ≡ 𝐷 mod 𝑀 .
Then any class of indefinite binary quadratic forms of discriminant 𝐷 has a representative 𝑄 with 𝑀 ∣
𝑎(𝑄) and 𝑏(𝑄) ≡ 𝐵 mod 𝑀 .

This shows that little is lost in considering quadratic forms modulo the action of Γ0(𝑀) instead of
SL2(ℤ).

So far, we have studied the cycles 𝐶𝜏 , which correspond to ring embeddings ℤ[𝜏] ↪ Mat2(ℤ). On the
other hand, if 0 and ∞ are cusps for Γ, then the line [0, ∞] ⊂ 𝔥 maps to a cycle in homology relative
to the cusps, denoted 𝐼 ∈ 𝐻1(𝑋Γ, Cusps; ℤ). This corresponds to the diagonally embedded split torus
ℚ× × ℚ× ↪ GL2(ℚ). For more on relative homology, see [MS74, Appendix A].

There is a natural intersection pairing

⟨⋅, ⋅⟩Γ : 𝐻1(𝑋Γ, Cusps; ℤ) × 𝐻1(𝑌Γ, ℤ) → ℤ (2.1.5)
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which coincides with the oriented intersection product of two cycles. Under Poincaré duality, this
corresponds to the cup product.

2.2 Hecke action on homology
References: [Ste82], [DPV21].

Let Γ ≤ SL2(ℤ) be a congruence subgroup, and for 𝑛 ∈ ℕ define

Mat2 (ℤ)𝑛 = {𝛿 ∈ Mat2(ℤ) : det 𝛿 = 𝑛}. (2.2.1)

For 𝛼 ∈ Mat2 (ℤ)𝑛, one can find a finite set of elements 𝛽 ∈ 𝑀2(ℤ)𝑛 such that

Γ𝛼Γ = ⋃
𝛽

Γ𝛽. (2.2.2)

This defines an action on modular forms 𝑓 ∈ 𝑀𝑘(Γ) by 𝑓|𝑘 [Γ𝛼Γ] ≔ ∑𝛽 𝑓 |𝑘 [𝛽]. When 𝛼 = (1
0

0
𝑛),

this gives the usual definition of the Hecke operator 𝑇𝑛.

Example 2.9 :  If Γ = Γ0(𝑀) for some 𝑀 ∈ ℕ and 𝛼 = (1
0

0
𝑛), then a complete set of elements 𝛽 is

given by

𝑀𝑛 ≔ ⋃
𝑑 | 𝑛

gcd(𝑑,𝑀)=1

⋃
𝑛
𝑑 −1

𝑗=0
(𝑑

0
𝑗

𝑛/𝑑). (2.2.3)

as described in [DS06], Exercise 5.3.1.

We can also act on the points of 𝑌Γ in a natural way, namely by

𝑇𝑛 ⋅ 𝑧 = ∑
𝛽∈𝑀𝑛

𝛽 ⋅ 𝑧. (2.2.4)

On cycles [𝑧, 𝛾𝑧], this gives the action

𝑇𝑛 ⋅ [𝑧, 𝛾𝑧] = ∑
𝛽∈𝑀𝑛

[𝛽𝑧, 𝛽𝛾𝑧]. (2.2.5)

Lemma 2.10 :  Hecke operators are self-adjoint with respect to the intersection pairing in Equation (2.1.5).

Note that we have not specified the Hecke action on 𝐻1(𝑋Γ, Cusps; ℤ), but this is done in the
following proof.

Proof :  We use the notation of [Bel21, §4,5], where it is proved that the cup product gives rise to a
Hecke-equivariant pairing

SymbΓ(ℤ) × 𝐻1(𝑌Γ, ℤ) → ℤ, (2.2.6)

defined in [Bel21, Eq. (5.2.2)]. By Lefschetz duality, by which we mean Poincaré duality for manifolds
with boundary, 𝐻1(𝑌Γ, ℤ) ≅ 𝐻1(𝑋Γ, 𝜕𝑋Γ; ℤ), and we note that this isomorphism defines the Hecke
action on the relative cohomology group. On the other hand, by [Bel21, Theorem 4.4.2], there
is a Hecke-equivariant isomorphism SymbΓ(ℤ) ≅ 𝐻1

𝑐 (𝑌Γ, ℤ), and another application of Lefschetz
duality gives the result. □

The map 𝑇𝑛 ↦ ⟨𝐼, 𝑇𝑛𝐶⟩Γ then defines a linear functional on the Hecke algebra acting on 𝐻1(𝑌Γ, ℤ).
In our case of interest, namely Γ = Γ0(𝑝), Hecke equivariance of the Eichler–Shimura isomorphism
implies that the Hecke action factors through the Hecke algebra 𝕋0(𝑝), the Hecke algebra acting faith-
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fully on 𝑀2(Γ0(𝑝)). The following lemma, which seems to be well-known, shows that the functional
gives rise to a modular form.

Lemma 2.11 :  Let 𝕋2(Γ0(𝑝)) be the full Hecke algebra acting on 𝑀 ≔ 𝑀2(Γ0(𝑝), ℚ). Then
𝕋2(Γ0(𝑝))∨ ≅ 𝑀 .

This follows from [DI95, Proposition 12.4.13], which proves the analogous result for the cuspidal
Hecke algebra, along with the fact that the 1-dimensional Eisenstein subspace is Hecke stable. Since
the isomorphism in question satisfies 𝜆 ↦ 𝑎0 + ∑∞

𝑛=1 𝜆(𝑇𝑛)𝑞𝑛, we obtain the following:

Corollary 2.12 :  For any 𝐶 ∈ 𝐻1(𝑌Γ0(𝑝), ℤ), there exists a modular form in 𝑀2(Γ0(𝑝)) with 𝑞-
expansion

𝑓(𝑧) = 𝑎0 + ∑
∞

𝑛=1
⟨𝐼, 𝑇𝑛𝐶⟩Γ0(𝑝)𝑞𝑛, (2.2.7)

for some 𝑎0 ∈ ℚ.

To compute the intersection numbers ⟨𝐼, 𝑇𝑛𝐶𝜏⟩Γ, it is convenient to lift the intersections to 𝔥. If 𝐶 ⊂
𝑌Γ is the cycle corresponding to a segment [𝑧, 𝛾𝐶𝑧], then

⟨𝐼, 𝐶⟩Γ = ∑
𝛾∈Γ

[0, ∞] ⋅ [𝛾𝑧, 𝛾𝛾𝐶𝑧]. (2.2.8)

Lemma 2.13 :  For any 𝑧 ∈ geo(𝜏), we have geo(𝜏) = ⋃𝑛∈ℤ[𝛾𝑛
𝜏 𝑧, 𝛾𝑛+1

𝜏 𝑧].

One may prove this by finding an explicit bijection geo(𝜏) → ℝ>0 under which 𝛾𝜏  acts via multipli-
cation by 𝜀, the fundamental unit in 𝒪𝜏 .

Recall from Example 2.9 that the action of the Hecke operator 𝑇𝑛 can be described explicitly using
the set of coset representatives 𝑀𝑛. Let 𝑀𝑛(𝜏) be the subset of matrices 𝛽 representing inequivalent
cosets modulo right multiplication by Γ0(𝑝)[𝜏 ],

⨆
𝛽

Γ0(𝑝)𝛽 = ⨆
𝛿

Γ0(𝑝)𝛿Γ0(𝑝)[𝜏 ]. (2.2.9)

Note that we may choose the coset representatives for 𝑀𝑛 to be {𝛽𝛾𝑖
𝜏 : 𝑖 = 0..𝑗 − 1} where 𝑗 =

[SL2(ℤ)[𝜏] : Γ0(𝑝)[𝜏 ]].

Proposition 2.14 (Unfolding lemma [DPV21, Lemma 1.10]) :  Let 𝜏  be a real quadratic point, and fix
𝑛 ∈ ℕ. For any 𝑧 ∈ 𝔥,

⟨𝐼, 𝑇𝑛𝐶𝜏⟩Γ0(𝑝) = 2 ∑
𝛿∈𝑀𝑛(𝜏)

∑
𝛾∈Γ0(𝑝)/Γ0(𝑝)[𝛿𝜏]

[0, ∞] ⋅ 𝛾 geo(𝛿𝜏). (2.2.10)

Proof :  For any real quadratic point 𝜌, fix a generator 𝛾𝜌 ∈ Γ0(𝑝)[𝜌] whose stable fixed point is 𝜌. If
𝑧 ∈ geo(𝛿𝜏), then

[0, ∞] ⋅ 𝛾 geo(𝛿𝜏) = ∑
𝑘∈ℤ

[0, ∞] ⋅ [𝛾𝛾𝑘
𝜌𝑧, 𝛾𝛾𝑘+1

𝜌 𝑧], (2.2.11)

and so the right hand side of Equation (2.2.10) unfolds to

∑
𝛿∈𝑀𝑛(𝜏)

∑
𝛾∈Γ0(𝑝)

[0, ∞] ⋅ [𝛾𝛿𝑧, 𝛾𝛾𝜌𝑧], (2.2.12)
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Here the factor of 2 cancels with the torsion subgroup {±1} ⊂ Γ0(𝑝)[𝛿𝜏]. Setting 𝑧′ = 𝛿−1𝑧, and using
that 𝛾𝜌 = 𝛿𝛾𝑓

𝜏 𝛿−1 for some 𝑓 ∈ ℕ, we note that

[0, ∞] ⋅ [𝛾𝑧, 𝛾𝛾𝜌𝑧] = [0, ∞] ⋅ ⋃
𝑓−1

𝑖=0
[𝛾𝛿𝛾𝑖

𝜏𝑧′, 𝛾𝛿𝛾𝑖+1
𝜏 𝑧′]. (2.2.13)

Since the matrices {𝛿𝛾𝑖
𝜏 : 𝛿 ∈ 𝑀𝑛(𝜏), 𝑖 = 0, …, 𝑓 − 1} form a complete set of representatives for 𝑀𝑛,

∑
𝛿∈𝑀𝑛(𝜏)

∑
𝛾∈Γ0(𝑝)

[0, ∞] ⋅ [𝛾𝛿𝑧, 𝛾𝛾𝜌𝑧] = ∑
𝛽∈𝑀𝑛

∑
𝛾∈Γ0(𝑝)

[0, ∞] ⋅ (𝛾𝛽𝑧′, 𝛾𝛽𝛾𝜏𝑧′)

= ⟨𝐼, 𝐶𝜏⟩Γ0(𝑝),
(2.2.14)

which finishes the proof. □

The correspondence between quadratic forms and ideals relates the intersection numbers to the Fourier
coefficients of the diagonal restriction of Hilbert Eisenstein series. Given a fixed class 𝐴 ∈ Cl+ 𝒪, define

𝕀(𝑛, 𝐴) ≔ {(𝜈, 𝔞) : 𝜈 ∈ (
√

𝐷)
−1

≫0
, Tr 𝜈 = 𝑛, 𝔞 ⊂ (𝜈

√
𝐷) proper, [𝔞] = 𝐴}, (2.2.15)

and for a fixed quadratic form 𝑄0, let

QF(𝑛, 𝑄0) ≔ {(𝛿, 𝑄) : 𝛿 ∈ 𝑀𝑛(𝑟𝑄0
), 𝑄 ∈ SL2(ℤ) ⋅ 𝑄0 ∘ 𝛿, 𝑟𝑄 > 0 > 𝑟′

𝑄}. (2.2.16)

Proposition 2.15 :  Suppose 𝑄0 is an indefinite quadratic form of discriminant 𝐷, and 𝐴 is the associated
class in Cl+ 𝒪. For any 𝑛 ∈ ℕ, there is a bijection between 𝕀(𝑛, 𝐴) and QF(𝑛, 𝑄0).

Proof :  The proof is analogous to [DPV21, Lemma 1.9], which proves the fundamental case. A pair
(𝜈, 𝔞) gives rise to a quadratic form 𝑄(𝑥, 𝑦) = Nm(𝔞)𝑥2 + 𝑏𝑥𝑦 − Nm(𝔞−1𝜈

√
𝐷)𝑦2 where 𝑏 is the

unique integer such that

𝜈 = −𝑏 + 𝑛
√

𝐷
2
√

𝐷
. (2.2.17)

Fix the representative 𝔄 = 𝑎(𝑄0)ℤ + 𝜏𝑎(𝑄0)ℤ for 𝐴, and note that 𝔞′𝔄 is principal with totally
positive generator 𝜆. The lattice associated to 𝔄 contains Λ ≔ ℤ𝜆 + ℤ𝜆𝑟𝑄 with index 𝑛. The corre-
sponding change of basis matrix is 𝛿.

Conversely, given (𝛿, 𝑄) ∈ QF(𝑛, 𝑄0) with 𝑄(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 one defines 𝜈 by Equa-
tion (2.2.17). If one picks 𝛾 ∈ SL2(ℤ) such that 𝑄 = 𝑄0 ∘ 𝛾𝛿, then 𝜆 ≔ 𝑎(𝑄0)(𝑐𝜏 + 𝑑) for 𝛾𝛿 = (∗

𝑐
∗
𝑑)

satisfies

(𝜆𝑤
𝜆 ) = 𝛿𝛾(𝑎(𝑄0)𝜏

𝑎(𝑄0)
). (2.2.18)

Note that 𝜆 ∈ 𝔄, so the ideals 𝔞 ≔ (𝜆′)(𝔄′)−1 and 𝔟 ≔ (𝜆𝑤)𝔄−1 are integral and satisfy 𝔞𝔟 =
(𝜈

√
𝐷), and this gives the required map. □

Note that by construction, the first coefficent of 𝑄 is the norm of the corresponding ideal 𝔞.

Fix a choice of 𝑠 ∈ ℤ such that 𝑠2 ≡ 𝐷 mod 𝑝. Given a class 𝐴 ∈ Cl+ 𝒪, by Proposition 2.8 we may
pick representatives 𝑄±𝑠 with class 𝐴 such that 𝑝 ∣ 𝑎(𝑄±𝑠) and 𝑏(𝑄±𝑠) ≡ ±𝑠 mod 𝑝. We then set
𝑔𝐴 ∈ 𝐻1(𝑌0(𝑝), ℤ) by 𝑔𝐴 ≔ 𝐶𝜏𝑠

+ 𝐶𝜏−𝑠
 where 𝜏±𝑠 is a root of 𝑄±𝑠.

Theorem 2.16 :  Let 𝜓 be a narrow ring class character associated to an order 𝒪, and suppose 𝑝 is a
rational prime which splits in 𝒪. Then
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Δ∗𝐸(𝑝)
𝒪 = 𝐿𝑝(0, 𝜓) − 2 ∑

𝐴∈ Cl+ 𝒪
𝜓(𝔞) ∑

∞

𝑛=1
⟨𝐼, 𝑇𝑛𝑔𝐴⟩Γ0(𝑝)𝑞𝑛. (2.2.19)

This extends [DPV21, Theorem A], where 𝜓 is assumed to be unramified, or equivalently, 𝒪 is maximal.
The proof is essentially the same.

Proof :  The diagonal restriction Δ∗𝐸(𝑝)
𝒪  and the intersection series are elements of 𝑀2(Γ0(𝑝)). It is

enough to show that 𝑎𝑛 ≔ 𝑎𝑛(Δ∗𝐸(𝑝)
𝒪 ) = ⟨𝐼, 𝑇𝑛𝐶𝜏⟩Γ0(𝑝) for all 𝑛 ∈ ℕ such that (𝑛, 𝑝) = 1, since

then the difference is an oldform of weight 2 and level Γ0(𝑝), hence 0. By Proposition 1.33,

𝑎𝑛 = 4 ∑
𝜈∈𝔡−1

Tr(𝜈)=𝑛

∑
𝔞⊂(𝜈

√
𝐷) proper

(𝔞,𝑝)=1

𝜓(𝔞) = 4 ∑
𝐴∈ Cl+ 𝒪

𝜓(𝐴) ∑
𝜈∈𝔡−1

Tr(𝜈)=𝑛

∑
𝔞⊂(𝜈

√
𝐷) proper

(𝔞,𝑝)=1
[𝔞]=𝐴

1. (2.2.20)

Since Δ∗𝐸𝒪 = 0,

∑
𝜈∈𝔡−1

Tr(𝜈)=𝑛

∑
𝔞⊂(𝜈

√
𝑑) proper

(𝔞,𝑝)=1
[𝔞]=𝑎

1 = − ∑
𝜈∈𝔡−1

Tr(𝜈)=𝑛

∑
𝔞⊂(𝜈

√
𝐷) proper

𝑝∣ Nm(𝑎)
[𝔞]=𝐴

1 = −#𝕀(𝑛, 𝐴)𝑝, (2.2.21)

where 𝕀(𝑛, 𝐴)𝑝 ≔ {(𝜈, 𝔞) ∈ 𝕀(𝑛, 𝐴) : 𝑝 ∣ Nm(𝑎)}. By Proposition 2.15, this is in bijection with pairs
(𝑄, 𝛿) ∈ QF (𝑛, 𝑄0) such that 𝑝 ∣ 𝑎(𝑄), and so we may write

𝑎𝑛 = 4 ∑
𝐴∈ Cl+ 𝒪

𝜓(𝐴) ∑
(𝑄,𝛿)∈ QF(𝑛,𝑄𝐴)

𝑝∣𝑎(𝑄)

1. (2.2.22)

Note that 𝜓(𝐴[
√

𝐷]) = −𝜓(𝐴) and [
√

𝐷] corresponds to the involution (0
1

−1
0 ) on quadratic forms,

which interchanges the roles of 𝑟𝑄 and 𝑟𝑄′ . As

[0, ∞] ⋅ geo(𝑄) =

{{
{{
{
{{
{{1 if 𝑟𝑄 > 0 > 𝑟𝑄′

−1 if 𝑟𝑄′ > 0 > 𝑟𝑄

0 otherwise,

(2.2.23)

we find

𝑎𝑛 = 2 ∑
𝐴∈ Cl+ 𝒪

𝜓(𝐴) ∑
𝛿∈𝑀𝑛(𝜏𝐴)

∑
𝑄∼𝑄0∘𝛿
𝑝∣𝑎(𝑄)

𝟙𝑟𝑄>0>𝑟𝑄′ − 𝟙𝑟𝑄′>0>𝑟𝑄

= 2 ∑
𝐴∈ Cl+ 𝒪

𝜓(𝐴) ∑
𝛿∈𝑀𝑛(𝜏)

∑
𝛾∈ SL2(ℤ)/ SL2(ℤ)[𝛿𝜏𝐴]

𝑝∣𝑎(𝑄𝛾𝛿𝜏𝐴
)

[0, ∞] ⋅ 𝛾 geo(𝛿𝜏𝐴).
(2.2.24)

We now aim to apply the unfolding lemma Proposition 2.14 by comparing SL2(ℤ)-orbits of quadratic
forms with Γ0(𝑝)-orbits. Fix 𝑠 ∈ ℤ such that 𝑠2 ≡ 𝐷 mod 𝑝, and fix matrices 𝐴±𝑠 ∈ SL2(ℤ) such
that 𝜏±𝑠 ≔ 𝐴±𝑠𝜏𝐴 has 𝑏(𝜏±𝑠) = ±𝑠. To see that such matrices always exist, write 𝑄𝐴(𝑥, 𝑦) = 𝑎𝑥2 +
𝑏𝑥𝑦 + 𝑐𝑦2 with (𝑐, 𝑝) = 1, and fix 𝑟 ∈ ℤ with 𝑟𝐶 ≡ 1

2(𝑠 − 𝑏) mod 𝑝. Then
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𝑄((1
𝑟

0
1)(𝑥

𝑦)) = 𝑥2(𝑎 + 𝑐𝑟2 + 𝑏𝑟) + 𝑥𝑦(𝑏 + 2𝑟𝑐) + 𝐶𝑦2

≡ 𝑥2(𝑟(𝑟𝑐 + 𝑏)) + 𝑥𝑦𝑠 + 𝐶𝑦2 mod 𝑝

≡ 𝑥2(𝑎 + 𝑠2 − 𝑏2

4𝑐
) + 𝑥𝑦𝑠 + 𝐶𝑦2 mod 𝑝

≡ 𝑥2(𝑎 + −4𝑎𝑐
4𝑐

) + 𝑥𝑦𝑠 + 𝐶𝑦2 mod 𝑝,

(2.2.25)

since 𝑠2 ≡ 𝐷 = 𝑏2 − 4𝑎𝑐 mod 𝑝. Now define 𝛿±𝑠 ≔ 𝐴±𝑠𝛿(𝐴±𝑠)−1, so that

SL2(ℤ)𝛿𝜏𝐴 = Γ0(𝑝)𝛿𝑠𝜏𝑠 ⊔ Γ0(𝑝)𝛿−𝑠𝜏−𝑠, (2.2.26)

and let 𝑁±𝑠
𝑛 ≔ 𝐴±𝑠𝑀𝑛(𝜏𝐴)𝐴−1

±𝑠  be the collection of all such 𝛿±𝑠. Note that

{𝑤 ∈ SL2(ℤ)𝛿𝜏𝐴 : 𝑝 ∣ 𝑎(𝑤)} = Γ0(𝑝)𝛿𝑠𝜏𝑠 ⊔ Γ0(𝑝)𝛿−𝑠𝜏−𝑠, (2.2.27)

as in [DPV21, Theorem 1.12]. Moreover, SL2(ℤ)[𝜏±𝑠] = Γ0(𝑝)[𝜏±𝑠], and #𝑁±𝑠
𝑛 = #𝑀𝑛(𝜏𝐴), so

⨆
𝛿∈𝑀𝑛(𝜏𝐴)

SL2(ℤ)𝛿 SL2(ℤ)[𝜏𝐴] = ⨆
𝛿±𝑠∈𝑁±𝑠

𝑛

Γ0(𝑝)𝛿±𝑠Γ0(𝑝)[𝜏±𝑠], (2.2.28)

because 𝛾𝛿±𝑠 = 𝛿′
±𝑠𝛾𝑖

𝜏±𝑠
 implies 𝛾 ∈ Γ0(𝑝). Thus

𝑎𝑛 = 2 ∑
𝐴∈ Cl+ 𝒪

𝜓(𝐴) ∑
𝛿∈𝑀𝑛(𝜏)

∑
𝛾∈ SL2(ℤ)/ SL2(ℤ)[𝛿𝜏𝐴]

𝑝∣𝑎(𝛾𝑄𝛿𝜏)

[0, ∞] ⋅ 𝛾 geo(𝛿𝜏𝐴)

= 2 ∑
𝐴∈ Cl+ 𝒪

𝜓(𝐴) ∑
𝛿𝑠∈𝑁𝑠

𝑛(𝜏𝑠)
∑

𝛾∈Γ0(𝑝)/Γ0(𝑝)[𝛿𝑠𝜏𝑠]
[0, ∞] ⋅ 𝛾 geo(𝛿𝑠𝜏𝑠)

+ ∑
𝛿−𝑠∈𝑁−𝑠

𝑛 (𝜏−𝑠)
∑

𝛾∈Γ0(𝑝)/Γ0(𝑝)[𝛿−𝑠𝜏−𝑠]
[0, ∞] ⋅ 𝛾 geo(𝛿−𝑠𝜏−𝑠).

(2.2.29)

Applying Proposition 2.14 to each of the sums then gives

𝑎𝑛 = ∑
𝐴∈ Cl+ 𝒪

𝜓(𝐴)(⟨𝐼, 𝐶𝜏𝑠
⟩Γ0(𝑝) + ⟨𝐼, 𝐶𝜏−𝑠

⟩Γ0(𝑝)), (2.2.30)

as required. □

2.3 Rigid meromorphic cocycles
References: [DV21], [Fus+23, §3].

In this section, we give a quick overview of rigid meromorphic cocycles, following the excellent survey
[Fus+23]. Let 𝔥𝑝 ≔ ℙ1(ℂ𝑝) − ℙ1(ℚ𝑝) be the 𝑝-adic upper half plane. This is a rigid analytic space
which can be described as an increasing limit of the open affinoid coverings

𝔥≤𝑛
𝑝 ≔ {[𝑧0 : 𝑧1] ∈ ℙ1(ℂ𝑝) : ord𝑝 det(𝑥0

𝑥1

𝑧0
𝑧1

) ≤ 𝑛 for all [𝑥0 : 𝑥1] ∈ ℙ1(ℚ𝑝)}, (2.3.1)

where each projective coordinate is subject to the condition max(|𝑧0|, |𝑧1|) ≤ 1. For further details on
the 𝑝-adic upper half plane, see [BC91] or [FV04]. A rigid analytic function on 𝔥𝑝 can be described as
a function 𝑓 : 𝔥𝑝 → ℂ𝑝 whose restriction to 𝔥≤𝑛

𝑝  is a limit of rational functions on ℙ1(ℂ𝑝) with no
poles in 𝔥≤𝑛

𝑝 . We denote the space of rigid analytic functions on 𝔥𝑝 by 𝒜. We define ℳ, the space of
rigid meromorphic functions, to be the fraction field of 𝒜.
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There is a natural action of GL2(ℚ𝑝) on 𝔥𝑝 by Möbius transformations. The subgroup Γ𝑝 ≔
SL2(ℤ[1/𝑝]), sometimes referred to as the Ihara group, is a 𝑝-arithmetic group which in the 𝑝-adic
theory plays the role of SL2(ℤ) in the real setting. Whereas CM-theory deals with the Klein 𝑗-
invariant which one may view as an element of 𝐻0(SL2(ℤ), ℳ×

𝔥 ), the lack of interesting elements of
𝐻0(Γ𝑝, ℳ×) suggests looking in higher cohomology groups.

A rigid analytic (resp. meromorphic) cocycle is a class in 𝐻1(Γ𝑝, 𝒜×) (resp. 𝐻1(Γ𝑝, ℳ×)), while a rigid
analytic theta cocycle is a class in 𝐻1(Γ𝑝, 𝒜×/ℂ×

𝑝 ). Note that despite the suggestive name, these rigid
cocycles are cohomology classes, not cocycles. Darmon and Vonk construct several explicit examples of
rigid meromorphic cocycles in [DV21] and subsequent work. These cohomology groups have natural
actions of Hecke operators, defined as follows: write

⋃
𝛼∈ Mat2(ℤ)
det(𝛼)=𝑛

Γ𝑝𝛼Γ𝑝 = ⨆
𝛽∈𝑀(Γ𝑝)

𝑛

Γ𝑝𝛽, (2.3.2)

where 𝑀(Γ𝑝)𝑛
 is a fixed finite set of representatives in Mat2(ℤ). For any 1-cocycle 𝐽  for Γ𝑝, define

(𝑇𝑛𝐽)(𝛾) ≔ ∏
𝛽

det(𝛽)𝛽−1 ⋅ 𝐽(𝛾′), (2.3.3)

where 𝛾′ is defined by 𝛽𝛾 = 𝛾′𝛽′ for some 𝛽′. By [Shi71, §8.3], changing the set 𝑀(Γ𝑝)𝑛
 transforms

𝑇𝑛𝐽  by a coboundary, and so 𝑇𝑛𝐽  is well-defined as a cohomology class.

A large supply of rigid analytic cocycles comes from the multiplicative Schneider–Teitelbaum lift, ST×,
introduced in [DV22a, §3]. The annulus 𝑈 ≔ {𝑧 ∈ ℂ𝑝 : 1 < |𝑧|𝑝 < 𝑝} ⊂ ℙ1(ℂ𝑝) has stabiliser Γ0(𝑝)
in Γ𝑝. The map

res𝑈 ∘ d log : 𝒜× → ℂ𝑝 given by 𝑓 ↦ res𝑈(𝑓 ′(𝑧)
𝑓(𝑧)

d𝑧) (2.3.4)

is trivial on constants, and induces a map in cohomology 𝛿𝑈 : 𝐻1(Γ𝑝, 𝒜×/ℂ×
𝑝 ) → 𝐻1(Γ0(𝑝), ℤ).

Proposition 2.17 ([DV22a]) :  The induced map

𝛿𝑈 : 𝐻1(Γ𝑝, 𝒜×/ℂ×
𝑝 ) → 𝐻1(Γ0(𝑝), ℚ) (2.3.5)

is surjective, and the kernel is generated by

𝐽triv(𝛾)(𝑧) ≔ 𝑧 − 𝛾𝜉
𝑧 − 𝜉

, 𝜉 ∈ ℙ1(ℚ𝑝). (2.3.6)

Furthermore, 𝛿𝑈  has a Hecke-equivariant section

ST× : 𝐻1(Γ0(𝑝), ℤ) → 𝐻1(Γ𝑝, 𝒜×/ℂ×
𝑝 ). (2.3.7)

By Eichler–Shimura, this implies that the Hecke action on 𝐻1(Γ𝑝, 𝒜×/ℂ×
𝑝 ) ⊗ ℚ factors through the

Hecke algebra of 𝑀2(Γ0(𝑝)).

Definition 2.18 :  Let 𝜑𝑤 be the Mazur winding element 𝜑𝑤(𝛾) ≔ ⟨𝐼, 𝛾⟩, which is an element of
𝐻1(𝑌0(𝑝), ℤ). Then the winding cocycle is defined by 𝐽𝑤 ≔ ST×(2𝜑𝑤) ∈ 𝐻1(Γ𝑝, 𝒜×/ℂ×

𝑝 ).

One can alternatively define 𝐽𝑤 explicitly as in [DPV21], and prove the equivalence using [DPV21,
Proposition 3.3].

Let Γ̃𝑝 ≔ GL+
2 (ℤ[1/𝑝]) = GL+

2 (ℚ) ∩ ∏′
ℓ≠𝑝 GL2(ℤℓ), which fits into the short exact sequence
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1 → Γ𝑝 → Γ̃𝑝 → 𝑝ℤ → 1. (2.3.8)

Proposition 2.19 ([DPV21, Theorem 2.10]) :  Let 𝐽𝑤 ∈ 𝐻1(Γ𝑝, 𝒜×/ℂ×
𝑝 ) be the winding cocycle, and

fix a real quadratic point 𝜏  of discriminant 𝐷 with ( 𝑝
𝐷) = −1. Then for any 𝑛 ∈ ℕ such that (𝑛, 𝑝) = 1,

we have

𝑇𝑛𝐽𝑤[𝜏 ] = ∏
𝛿∈𝑀𝑛(𝜏)

∏
𝑤∈Γ̃𝛿𝜏

𝑣𝑝(𝑤)=0

𝑤[0,∞]⋅ geo(𝜏). (2.3.9)

This should be thought of as a multiplicative analogue of Proposition  2.14. Furthermore, since
the Hecke algebra acting on 𝐻1(Γ𝑝, 𝒜×/ℂ×

𝑝 ) is a quotient of 𝕋2(Γ0(𝑝)), the expression
∑∞

𝑛=1 log𝑝(Nm 𝑇𝑛𝐽𝑤[𝜏 ])𝑞𝑛 is the non-constant coefficients of some modular form in 𝑀2(Γ0(𝑝)). By
explicit computation, we will identify these with the coefficients of the ordinary projection of a 𝑝-adic
modular form, and hence obtain the constant term. The strategy is parallel to that of Theorem 2.16.

Proposition 2.20 ([DPV21, Lemma 2.1]) :  Let ℱ𝑡 be a family of overconvergent 𝑝-adic modular forms
of weight 𝑘(𝑡) indexed by 𝑡 in some closed rigid analytic disk 𝐷. If 𝑡0 ∈ 𝐷 such that ℱ𝑡0

= 0 and 𝑘(𝑡0) ∈
ℤ, then

( d
d𝑡

ℱ𝑡) |𝑡=𝑡0
(2.3.10)

is an overconvergent modular form of weight 𝑘(𝑡0).

To apply this to Δ∗ℰ𝑘, we first need to check that it defines a family of overconvergent modular forms.

Lemma 2.21 :  The power series Δ∗ℰ𝑘 defines a family of overconvergent modular forms of weight 2 and
tame level 1.

Proof :  By restricting to level

𝐾(𝑁) ≔ {𝑔 ∈ GL2(𝒪𝐹 ) : 𝑔 ≡ 1 mod 𝑁} ⊂ GL2(𝒪) (2.3.11)

one sees that ℰ𝑘 is an overconvergent family of tame level 𝐾(𝑁) in the sense of [AIP16, §4]¹.
It follows that Δ∗ℰ𝑘 is an overconvergent family of tame level Γ(𝑁). Averaging over the action of
Γ0(𝑝)/(Γ0(𝑝) ∩ Γ(𝑁)) gives a family with the same 𝑞-expansion and tame level 1, and so Δ∗ℰ𝑘 is
itself overconvergent of tame level 1. □

Applying Proposition 2.20 to the Eisenstein family Δ∗ℰ𝑘 from Corollary 1.39 which vanishes at 𝑘 =
1, we get that

𝜕𝑓 ≔ ( d
d𝑡

Δ∗ℰ𝑘) |𝑘=1 (2.3.12)

is an overconvergent modular form in 𝑀†
2 (Γ0(𝑝)). Now let 𝑒ord : 𝑀†

2 (Γ0(𝑝)) → 𝑀2(Γ0(𝑝)) denote
Hida’s ordinary projector, defined by

𝑒ord(𝑓) ≔ lim
𝑛→∞

𝑈𝑛!
𝑝 𝑓. (2.3.13)

¹Technically, they work with 𝜇𝑁 -level structure, but this merely simplifies the underlying moduli problem, and the
construction goes through in greater generality. Alternatively, one may simply pull back the overconvergent sheaves
via the covering map on the Hilbert modular surfaces.
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Lemma 2.22 :  Let 𝑛 ∈ ℕ be coprime to 𝑝. Then

𝑎𝑛(𝑒ord𝜕𝑓) = −2 log𝑝(Nm 𝑇𝑛𝐽𝑤[Δ𝜓]), (2.3.14)

where Δ𝜓 is the divisor ∑𝐴∈ Cl+ 𝒪 𝜓(𝐴)𝜏𝐴 ∈ ℚ(𝜓)[Cl+ 𝒪].

The proof is essentially the same as that of [DPV21, Theorem 2.11].

Proof :  By differentiating the Fourier expansion of Δ∗ℰ𝑘 termwise, we find that

𝑎𝑛(𝜕𝑓) = 4 ∑
𝜈∈𝔡−1

𝒪
𝜈≫0

Tr(𝜈)=𝑛

∑
𝔞⊂𝜈

√
𝐷 proper

(𝔞,𝑝)=1

𝜓(𝔞) log𝑝(Nm(𝔞)). (2.3.15)

For a fixed class 𝐴 ∈ Cl+ 𝒪, let 𝜏  be an associated real quadratic point. Using the norm-preserving
bijection Proposition 2.15, we may rewrite this as a sum over elements of

QF(𝑛, 𝑄𝜏)(𝑝) ≔ {(𝑄, 𝛿𝑛) : (𝑎(𝑄), 𝑝) = 1}. (2.3.16)

Fix 𝑛 coprime to 𝑝. Then 𝑎𝑛(𝑒ord𝜕𝑓) = lim𝑚→∞ 𝑎𝑛𝑝𝑚(𝜕𝑓), and 𝑎𝑛𝑝𝑚(𝜕𝑓) is a weighted combination
of expressions of the form

4 ∑
(𝑄,𝛿𝑛𝑝𝑚)∈QF(𝑛,𝑄𝜏)(𝑝)

[0, ∞] ⋅ geo(𝑤𝑄) log𝑝(𝑎(𝑄)), (2.3.17)

where 𝑤𝑄 denotes the first root of 𝑄. For 𝛿𝑛 ∈ 𝑀𝑛(𝜏), define

𝑋𝑚(𝛿𝑛) ≔ {𝑤 ∈ Γ̃𝑝𝛿𝑛 : 𝑣𝑝(𝑤) = 0, 𝑣𝑝(disc(𝑤)) ≤ 2𝑚}. (2.3.18)

Then there is a bijection

⨆
𝛿𝑛

𝑋𝑚(𝛿𝑛) → QF(𝑛𝑝𝑚, 𝑄𝜏)(𝑝) (2.3.19)

given as follows: for 𝑤 ∈ 𝑋𝑚(𝛿𝑛) with disc(𝑤) = 𝑝2𝑚−2𝑘, �̃� ≔ 𝑝𝑘𝑤 is a root of 𝑎𝑥2 + 𝑏𝑝𝑘𝑥 + 𝑐𝑝2𝑘

for some integers 𝑎, 𝑏, 𝑐, and �̃� ∈ SL2(ℤ)𝛿𝑝𝑚𝛿𝑛𝜏  for some 𝛿𝑝𝑚 ∈ 𝑀𝑝𝑚(𝜏). Letting 𝑄�̃� = 𝑎𝑥2 + 𝑏𝑥𝑦 +
𝑐𝑦2, the map 𝑤 ↦ (𝑄�̃�, 𝛿𝑝𝑚) defines a map 𝑋𝑚(𝛿𝑛) → QF(𝑛𝑝𝑚, 𝑄𝜏)(𝑝), with inverse �̃� ↦ 𝑝−𝑣𝑝(�̃�)�̃�.
It follows that

lim
𝑚→∞

𝑎𝑛𝑝𝑚(𝜕𝑓) = 4 ∑
𝐴∈ Cl+ 𝒪

𝜓(𝐴) ∑
𝑀𝑛(𝜏𝐴)

∑
𝑤∈Γ̃𝛿𝑁𝜏𝐴

[0, ∞] ⋅ geo(𝑤𝑄) log𝑝(𝑎(𝑤𝑄)). (2.3.20)

A short computation shows that log𝑝 Nm(𝑤) = − log𝑝 𝑎(𝑄𝑤) + log𝑝 𝑐(𝑄𝑤). Note that 𝑐(𝑄𝑤) =
𝑎(𝑄𝑤 ∘ 𝑆) for 𝑆 = (0

1
−1
0 ). The map 𝑄 ↦ 𝑄 ∘ 𝑆 preserves the indexing set, and since [0, ∞] ⋅

geo(𝑤𝑄) = −[0, ∞] ⋅ geo(𝑤𝑄∘𝑆), we conclude that

∑
𝑀𝑛(𝜏𝐴)

∑
𝑤∈Γ̃𝛿𝑛𝜏𝐴

[0, ∞] ⋅ geo(𝑤𝑄) log𝑝(𝑎(𝑤𝑄))

= −2 ∑
𝑀𝑛(𝜏𝐴)

∑
𝑤∈Γ̃𝛿𝑛𝜏𝐴

[0, ∞] ⋅ geo(𝑤𝑄) log𝑝(Nm(𝑤𝑄)).
(2.3.21)

The result now follows from Proposition 2.19. □

Since 𝑒ord𝜕𝑓 − ∑∞
𝑛=1 log𝑝 Nm(𝑇𝑛𝐽𝑤[𝜏 ])𝑞𝑛 is an oldform of level Γ0(𝑝) and weight 2, it is identically

0. This proves the following:
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Theorem 2.23 :  Let 𝑝 be inert in the order 𝒪 ⊂ 𝐹 . For any totally odd primitive ring class character 𝜓 :
Cl+ 𝒪 → ℂ×,

𝑒ord(𝜕𝑓) = 𝜀(𝜓)𝐿′
𝑝(0, 𝜓) − 2 ∑

∞

𝑛=1
log𝑝 Nm𝐹𝑝/𝑄𝑝

(𝐽𝑤𝑇𝑛[Δ𝜓])𝑞𝑛. (2.3.22)

This extends [DPV21, Theorem B], which is the corresponding statement for 𝒪 = 𝒪𝐹 .

2.4 Spectral decomposition
By [DPV21, Lemma 3.4], the Hecke decomposition of winding element is given by

𝜑𝑤 = 1
𝑝 − 1

𝜑DR + ∑
𝑓

𝐿alg(𝑓, 1)𝜑−
𝑓 , (2.4.1)

where²

𝜑DR(𝛾) = 1
2𝜋𝑖

∫
𝛾𝑧0

𝑧0

𝐸𝑝
2 d𝑧, (2.4.2)

𝐿alg = 𝐿(1, 𝑓)/Ω−
𝑓 ∈ ℚ is the “rational part” of the 𝐿-value 𝐿(1, 𝑓), and

𝜑−
𝑓 (𝛾) = 1

Ω−
𝑓

∫
𝛾𝑧0

𝑧0

𝜔−
𝑓 . (2.4.3)

Applying the map ST×, one obtains [DPV21, Lemma 3.6]:

𝐽𝑤 = 2
𝑝 − 1

𝐽DR ⋅ ∏
𝑓

𝐽−
𝑓 mod 𝐽univ, (2.4.4)

where 𝐽−
𝑓 = ST×(𝜑−

𝑓 ) and 𝐽DR = ST×(𝜑DR).

Remark 2.24 :  In [DPV23], 𝐽DR is studied in greater detail. In particular, they show in [DPV23,
Theorem A] that 𝐽DR is naturally a cocycle in 𝑍1(Γ𝑝, 𝒜×/𝑝ℤ) by constructing an explicit cochain
representative using Siegel units. Furthermore, they prove algebraicity of 𝐽DR[𝜏 ] at a real quadratic
point 𝜏  with fundamental discriminant, up to some torsion ambiguity.

Using a variant of the original Siegel unit construction, Sim [Sim23] showed that 𝐽DR may be viewed
as a natural level 1 analogue of cocycles constructed by Darmon and Dasgupta [DD06]. An alternative
construction of 𝐽DR is given in [Geh22, §3.3].

Theorem 2.25 :  Fix an eigenbasis 𝐸(𝑝)
2 , {𝑓} for 𝑀2(Γ0(𝑝)), and a ring class character 𝜓 : Cl+ 𝒪 → ℂ×

of an order 𝒪 ⊂ 𝐹 .
(i) If 𝑝 splits in 𝒪, then

Δ∗𝐸(𝑝)
𝜓 = 𝜆0𝐸

(𝑝)
2 + ∑

𝑓
𝜆𝑓 ⋅ 𝑓 (2.4.5)

where

𝜆0 = −2 𝜀(𝜓)
𝑝 − 1

𝜑DR(𝑔𝜓) and 𝜆𝑓 = 2𝐿alg(1, 𝑓) ⋅ 𝜑−
𝑓 (𝑔𝜓) (2.4.6)

²Note that “DR” stands for “Dedekind–Rademacher”, and not “de Rham”.
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.
(ii) If 𝑝 is inert in 𝒪, then

𝑒ord( d
d𝑘

Δ∗ℰ𝑘 |𝑘=1) = 𝜆0′𝐸(𝑝)
2 + ∑

𝑓
𝜆′

𝑓 ⋅ 𝑓 (2.4.7)

where

𝜆′
0 = −4𝜀(𝜓)

𝑝 − 1
log𝑝 Nm 𝐽DR[Δ𝜓] and 𝜆′

𝑓 = −4𝐿alg(1, 𝑓) ⋅ log𝑝 Nm 𝐽−
𝑓 [Δ𝜓]. (2.4.8)

This generalizes [DPV21, Theorem C], and the proof is completely identical: see [DPV21, §3.4-5].

Remark 2.26 :  It would be interesting to modify the algorithms from [LV22] and [Dam24] to compute
explicitly the modular forms in Theorem 2.16, Theorem 2.23 and Theorem 2.25. The first could hypo-
thetically give faster algorithms for computing 𝑝-adic 𝐿-functions associated with ring class characters
than those in [LV22]. The reason for this is that they need to compute bases for 𝑀𝑘(Γ0(𝑁𝑝)) for
various 𝑘 in order to solve for the constant term of a certain 𝑝-adic Eisenstein family. On the other
hand, the classical specializations of our Eisenstein series are found in 𝑀𝑘(Γ0(𝑝)), which is a much
smaller space. However, our attempts at generalizing the algorithms have so far been unsuccessful due
to problems with enumerating non-invertible ideals.
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Chapter II: Computation of Gross–Stark units and Stark–
Heegner points

Let 𝐹  be a real quadratic field and 𝑝 a rational prime. While there is no direct analogue of the
construction of the elliptic units from CM theory over 𝐹 , Gross [Gro81] constructed what are now
known as Gross–Stark units, formal powers of 𝑝-units in class fields of 𝐹 , and formulated a 𝑝-adic
analogue of Stark’s conjectures for these. His conjecture, which relates the value of derivatives of 𝑝-
adic 𝐿-functions at 𝑠 = 0 to local norms of Gross–Stark units, was proved in [DDP11]. This was refined
to a statement with norms removed in [DKV18], and recently Dasgupta and Kakde proved an integral
version where formal units are replaced with global units [DK23].

The computation of Gross–Stark units over real quadratic fields was studied in [TY13] when 𝑝 splits
in 𝐹 , and [FL22] for 𝑝 inert in 𝐹 . In the real-analytic setting, in [CR00] Cohen and Roblot used Stark’s
conjectures to compute wide Hilbert class fields of real quadratic fields, and similar algorithms form the
basis for general algorithms to compute ray class fields in pari/GP. By analogy with Heegner points,
Darmon’s work [Dar01] uses 𝑝-adic analysis to construct points on elliptic curves. These so-called
Stark–Heegner points are conjectured to be defined over ring class fields of 𝐹 . While this conjecture is
still wide open in general, it is supported by extensive computational evidence. Analogous formulas
for Gross–Stark units are given in [DD06].

In [DV21], Darmon and Vonk introduce rigid meromorphic cocycles which take the 𝑝-adic theory
beyond Stark’s conjectures. Their framework gives an analogue of singular moduli for real quadratic
fields. As a by-product, they recover a common framework for Stark units and Stark–Heegner points:
in subsequent work, Darmon, Pozzi and Vonk [DPV23] use 𝑝-adic families of Hilbert modular forms
to give an explicitly computable modular form whose spectral expansion encodes both Gross–Stark
units and Stark–Heegner points.

More specifically, the authors construct a classical modular form 𝐺 from a parallel weight 1 Hilbert
Eisenstein series 𝐸1,1 over a real quadratic field 𝐹  in which 𝑝 is inert. First, they define the anti-
parallel weight deformation of 𝐸1,1, and modify by a linear combination of Eisenstein families. Then
they restrict the argument to the diagonally embedded upper half plane 𝔥 in 𝔥 × 𝔥, and differentiate
with respect to the weight. This is shown to be a 𝑝-adic modular form, to which they finally apply
Hida’s ordinary projector to get the modular form 𝐺 ∈ 𝑀2(Γ0(𝑝)). They also prove that the form is
non-trivial exactly when 𝐹  has no unit of negative norm.

The spectral expansion of 𝐺 has great arithmetic significance: if 𝐸(𝑝)
2  denotes the Eisenstein series on

𝑀2(Γ0(𝑝)), then

⟨𝐺, 𝐸(𝑝)
2 ⟩Γ0(𝑝) = 1

𝑝 − 1
log𝑝(𝑢), (2.4.9)

where 𝑢 is a Gross–Stark unit. When 𝑓 ∈ 𝑆2(Γ0(𝑝)) is a cuspidal eigenform with coefficients in ℚ,

⟨𝐺, 𝑓⟩Γ0(𝑝) = 𝐿alg(1, 𝑓) log𝐸𝑓
(𝑃𝑓), (2.4.10)

for 𝐿alg(1, 𝑓) the algebraic part of the special value 𝐿(1, 𝑓) of the 𝐿-function attached to 𝑓 , 𝐸𝑓  the
elliptic curve associated to 𝑓  via the Eichler–Shimura construction, log𝐸𝑓

 the formal logarithm on 𝐸𝑓 ,
and 𝑃𝑓  a Stark–Heegner point on 𝐸𝑓 , conjecturally defined over the narrow Hilbert class field of 𝐹 .
A more precise statement may be found in Theorem 3.2.

The goal of this chapter is to show that the steps defining 𝐺 can be made completely explicit in a
computer algebra system such as sage [The22] or magma [BCP97], and in particular we can compute the

47



spectral coefficients of 𝐺 to arbitrary precision. A key tool is algorithms for overconvergent modular
forms due to Lauder ([Lau11], [Lau14]), with necessary modifications for 𝑝 ∈ {2, 3} from [Von15]. As a
proof of concept, we compute tables of Gross–Stark units over ℚ(

√
𝐷) for fundamental discriminants

𝐷 < 10000 and 𝑝 < 20, and Stark–Heegner points on elliptic curves for 𝐷 < 100, 𝑝 < 20. This can
be viewed as a numerical verification of [DV22a, Conjecture 3.19]. For 𝑝 equal to 2 or 3, these tables
are virtually complete, with only a handful of omissions due to the large height of the polynomials.
Some of the data is presented in Appendix B.

Previous computations of Gross-Stark units and Stark-Heegner points

Systematic computation of Gross–Stark units was introduced in Slavov’s thesis [Sla07], based on
Shintani’s method for constructing 𝐿-functons and related work of Dasgupta [Das08]. In [TY13],
similar computations are done using a certain 𝑝-adic gamma-function.

In the wake of Darmon’s work on Gross–Stark units and Stark–Heegner points, there appeared
a growing literature on computational aspects. The paper [Dar01, §11] includes several examples
of Stark–Heegner points computed using 𝑝-adic multiplicative integrals. These computations were
extended in [DG02], which systematically tabulates points on elliptic modular curves of class numbers
1 and 2, in addition to selected examples for larger class numbers. Furthermore, they ask the natural
question of whether there exists a polynomial time (in 𝑝) algorithm for computing Stark–Heegner
point. This question is answered affirmatively in [DP06], in which the authors describe an algorithm
using Pollack–Stevens overconvergent modular symbols.³ Their techniques form the basis for other
implementations of Stark–Heegner point algorithms, see for example the sage package DarmonPoints
at https://github.com/mmasdeu/darmonpoints. This package, created by Masdeu and based on [GM13],
[GM14], [GMS15] and other work, computes generalizations of Stark–Heegner points (or Darmon
points, as they call them), as well.

3 The modular algorithm

3.1 Notation
In this chapter, 𝐹  will denote a real quadratic extension of ℚ of discriminant 𝐷, and 𝒪𝐹  its ring of
integers. Its different ideal, which is principal and generated by 

√
𝐷, will be denoted 𝔡. If 𝛼 ∈ 𝐹 , let

𝛼′ be its conjugate.

We let Cl+ be the narrow ideal class group of 𝐹 , so that Cl+ ≅ 𝐺 ≔ Gal(𝐻/𝐹) where 𝐻  is the narrow
Hilbert class field of 𝐹 , the maximal abelian extension of 𝐹  unramified at all finite places, of degree
ℎ+ over 𝐹 . Given an integral ideal 𝔞 of 𝐹 , let [𝔞] denote the class in Cl+ to which 𝔞 belongs. For
𝜎 ∈ 𝐺, the corresponding class in Cl+ is denoted 𝐴𝜎, and conversely a class 𝐴 in Cl+ determines an
automorphism 𝜎𝐴 ∈ 𝐺. The narrow ideal class group is strictly larger than the wide ideal class group if
and only if 𝐹  has no units of norm −1. We restrict our attention to this case, as otherwise the modular
forms in question vanish identically.

Under this assumption, the principal ideal 𝔡 defines an element [𝔡] of order 2 in Cl+. Furthermore, 𝐻
is a CM extension of the wide Hilbert class field of 𝐹 , and the automorphism 𝜅 = 𝜎[𝔡] plays the role

³The associated code, found at https://www.math.mcgill.ca/darmon/programs/shp/shp.html, does not work out of the
box due to changes in magma. Below is a quick-fix, which recovers some functionality:

## Change line 175 in stark-heegner.magma from
Phi := Isomorphism(ETate,EoverCp);
## to
EWeiers, f1, _ := WeierstrassModel(ETate);
psi := Isomorphism(EWeiers, EoverCp);
Phi := f1 *psi;
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of complex conjugation in 𝐺. We frequently write 𝛼 instead of 𝜅(𝛼) if the meaning is clear from the
context.

Let 𝑝 be a rational prime inert in 𝐹 . Then (𝑝) ⊂ 𝒪𝐹  splits completely in 𝐻 , and we fix a prime 𝔓 of 𝐻
above (𝑝). This determines an isomorphism of completions 𝐹𝑝 ≅ 𝐻𝔓, where for brevity we set 𝐹𝑝 =
𝐹(𝑝). A function 𝑓 : Cl+ → ℂ is odd if 𝑓(𝐴[𝔡]) = −𝑓(𝐴) for all 𝐴 ∈ Cl+. The field generated by the
values of a character 𝜓 of 𝐺 is denoted by ℚ(𝜓).

We say an element 𝛼 ∈ 𝐹  is totally positive if 𝜌(𝛼) > 0 for all embeddings 𝜌 : 𝐹 ↪ ℝ, and we write
𝛼 ≫ 0. If 𝑋 ⊂ 𝐹  is any subset, we set 𝑋+ ≔ {𝛼 ∈ 𝑋 : 𝛼 ≫ 0}.

Given an integral ideal 𝔞 of 𝐹 , let Nm(𝔞) ≔ #(𝒪𝐹 /𝔞), and this extends to fractional ideals by
Nm(𝔞/𝔟) ≔ Nm(𝔞)/ Nm(𝔟), and to elements 𝛼 ∈ 𝐹× by Nm(𝛼) = Nm((𝛼)), where (𝛼) denotes the
fractional ideal generated by 𝛼. By convention, we also set Nm(𝑥) = 𝑥2 when 𝑥 is an indeterminate.
For any number field 𝐾 , 𝜇(𝐾) denotes the set of all roots of unity in 𝐾 .

If 𝔓 is a non-zero prime ideal of 𝐻  and 𝛼 ∈ 𝐻×, then we set |𝛼|𝔓 = Nm(𝔓)− ord𝔓 𝛼, where ord𝔓 𝛼
denotes the power of 𝔓 appearing in the prime ideal factorisation of (𝛼). This is the so-called
normalised absolute value with respect to 𝔓, and in particular Nm(𝔓) = 𝑝2 in the present setting.
All of our absolute values will be normalised, and we refer to [Gro81, p. 980] for a general definition
which applies to both the finite and infinite places of 𝐻 .

The 𝑝-units in 𝐻  is the group 𝒪𝐻 [1/𝑝]× ≔ {𝛼 ∈ 𝐻× : |𝛼|𝑣 = 1  if 𝑣 ∤ 𝑝}, where 𝑣 runs over all
places of 𝐻 . In particular, 𝛼 ∈ 𝒪𝐻 [1/𝑝]× has absolute value 1 under every embedding 𝐻 ↪ ℂ. This
is a finitely generated abelian group by a version of Dedekind’s unit theorem, [Neu99, Cor. 11.7].

3.2 Gross-Stark units and Stark–Heegner points
Gross [Gro81, Prop. 3.8] proved the existence and uniqueness of a “formal power of a 𝑝-unit” 𝑢 ∈
𝒪𝐻 [1/𝑝]× ⊗ ℚ characterised by the properties

ord𝔓 𝜎(𝑢) = 𝜁(0, 𝐴𝜎)  for all 𝜎 ∈ 𝐺 and 𝑢 = 1/𝑢, (3.2.1)

where the bar denotes complex conjugation, and 𝜁(𝑠, 𝐴𝜎) is the partial 𝜁-function defined by the
Dirichlet series 𝜁(𝑠, 𝐴𝜎) = ∑𝔞≤𝒪𝐹 , [𝔞]=𝐴𝜎

Nm (𝔞)−𝑠, which admits a meromorphic continuation to ℂ
in the usual manner. This depends only on the choice of prime 𝔓 of 𝐻  above 𝑝. In [DPV23, Eq. (4)],
the authors twist by elements of 𝐺 to get units 𝑢𝐴 ≔ 𝜎𝐴(𝑢) indexed by 𝐴 ∈ Cl+, equal to 𝑢𝜏  when
𝐴 = [ℤ + 𝜏ℤ] in their notation. It is therefore characterised by

ord𝔓𝜎 𝑢𝐴 = −𝜁(0, 𝐴𝐴𝜎−1)  for all 𝜎 ∈ 𝐺 and 𝑢𝐴 = 1/𝑢𝐴. (3.2.2)

This is referred to as the Gross–Stark unit attached to 𝐴. Note that these are all 𝐺-conjugate: 𝜎(𝑢𝐴) =
𝑢𝐴𝐴𝜎

.

The Brumer–Stark conjecture, proven for 𝑝 ≠ 2 in [DK23], and in general in [Das+23], implies that
𝑢𝑒

𝐴, where 𝑒 = #𝜇(𝐻), gives an element of 𝒪𝐻 [1/𝑝]×. More precisely, there exists an element 𝜀 ∈
𝒪𝐻 [1/𝑝]× satisfying 𝜀 ⊗ 1 = 𝑒 ⋅ 𝑢 such that 𝐻( 𝑒

√
𝜀)/𝐹  is an abelian extension. We set 𝜀𝐴 ≔ 𝜎𝐴(𝜀),

which we refer to as the Brumer–Stark unit attached to 𝐴. These are the units we compute in Section 4.
An immediate consequence of the second part of Equation (3.2.2) is that 𝜀𝐴 lies on the unit circle under
any embedding 𝐻 ↪ ℂ.

We also attach a Gross–-Stark unit to a character 𝜓 : 𝐺 → ℂ× by setting

𝑢𝜓 ≔ ∏
𝐴∈ Cl+

𝑢𝜓(𝐴)
𝐴 = ∏

𝜎∈𝐺
𝜎(𝑢)𝜓(𝐴𝜎), (3.2.3)
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which lies in 𝒪𝐻 [1/𝑝]× ⊗ ℚ(𝜓), and satisfies ord𝔓 𝑢𝜓 = −𝐿(0, 𝜓) and 𝜎(𝑢𝜓) = 𝜓(𝐴𝜎)𝑢𝜓 for all 𝜎 ∈
𝐺. This is compatible with the notation in [DDP11].⁴

The Stark–Heegner points 𝑃𝜓,𝑓  are defined in [Dar01] and [Das05], and for brevity we give a
description of their properties instead of a strict definition. When 𝑓  has rational coefficients, these are
𝑝-adic points on the elliptic curve 𝐸𝑓  associated to 𝑓  through the Eichler–Shimura construction. We
henceforth assume that this is the case. The reader may find further details about the construction of
Stark–Heegner points in [DV22a, §3.7].

Fix such an elliptic curve 𝐸𝑓 . In this setting, 𝑃𝜓,𝑓  comes from an element of 𝐹𝑝 defined via 𝑝-adic
analytic methods. By [Sil09, Thm. 14.1], 𝐸𝑓(𝐹𝑝) is isomorphic to 𝐹×

𝑝 /𝑞ℤ where 𝑞 is the Tate parameter
attached to 𝐸𝑓 . We can find an explicit isomorphism 𝐸𝑓(𝐹𝑝) → 𝐹×

𝑝 /𝑞ℤ as follows: first find an iso-
morphism between 𝐸𝑓  and the corresponding Tate curve 𝐸𝑞 by computing their Weierstraß equations
and using the command IsIsomorphic in magma. Then compute the isomorphism 𝐸𝑞 → 𝐹×

𝑝 /𝑞ℤ using
the formulae in [Sil09, § C.14]. This gives a point 𝑃𝜓,𝑓  in 𝐸𝑓(𝐹𝑝). However, it is conjectured in [Dar01]
that it is actually defined over 𝐻  via the embedding 𝐻 ↪ 𝐻𝔓 ≅ 𝐹𝑝, and in Section 4.2 we verify this
computationally.

3.3 Diagonal restriction derivatives
Let 𝜓 be an odd character on Cl+. Following [DPV23] we consider the Hilbert modular Eisenstein
series 𝐸1,1(𝜓) of parallel weight 1 whose 𝑞-expansion at the cusp 𝔡 is given by the series

𝐸1,1(𝜓)𝔡 = ∑
𝜈∈𝔡−1

+

𝜎0,𝜓(𝜈𝔡)𝑞tr 𝜈 , (3.3.1)

where 𝜎0,𝜓(𝜈𝔡) is the divisor sum

𝜎0,𝜓(𝜈𝔡) ≔ ∑
𝔞∣𝜈𝔡

𝜓(𝔞). (3.3.2)

For 𝑝 a rational prime inert in 𝐹 , we also define the 𝑝-stabilisation of 𝐸1,1(𝜓) by 𝐸(𝑝)
1,1(𝜓)(𝑧1, 𝑧2) ≔

𝐸1,1(𝜓)(𝑧1, 𝑧2) − 𝑝𝐸1,1(𝜓)(𝑝𝑧1, 𝑝𝑧2). There is a certain 𝑝-adic family of modular forms ℱ+, a linear
combination of two Eisenstein families along with the anti-parallel weight deformation, whose weight
1 specialisation equals 𝐸(𝑝)

1,1(𝜓). Note that ℱ+ is different from the parallel weight Eisenstein family
used in [DPV21], and computing its 𝑞-expansion requires a fairly delicate argument using Galois
deformation theory, the details of which are in [DPV23, §3]. Since 𝐸(𝑝)

1,1(𝜓)(𝑧, 𝑧) is the 𝑝-stabilization
of a classical modular form of level 1 and weight 2 and therefore identically 0, 𝐸(𝑝)

1,1(𝜓) vanishes along
the diagonally embedded copy of 𝔥 in its domain 𝔥 × 𝔥. Taking the derivative of ℱ+ in the weight
space and restricting to weight 1 then gives an overconvergent modular form in one variable, denoted
by 𝜕𝑓+

𝜓 . We refer to this as the diagonal restriction derivative, and its 𝑞-expansion is given as follows:

Proposition 3.1 ([DPV23, Prop. 4.6]) : The diagonal restriction derivative is an overconvergent modular
form of weight 2 and tame level 1 with 𝑞-expansion

𝜕𝑓+
𝜓 (𝑞) = 1

2
log𝑝(𝑢𝜓) − ∑

∞

𝑛=1
∑

𝜈∈𝔡−1
+

tr 𝜈=𝑛

∑
𝔞∣(𝜈)𝔡

(𝔞,𝑝)=1

𝜓(𝔞) log𝑝(
𝜈
√

𝐷
Nm(𝔞)

)𝑞𝑛. (3.3.3)

It has rate of overconvergence 𝑟 for each 𝑟 < 𝑝/(𝑝 + 1).

⁴However, it is different from the formula in [DPV23, Eq. (51)], in which 𝑢𝜓 depends on 𝜏 , and the corresponding
formula for ord𝔓 𝑢𝜓 in the proof of Lemma 3.5 is off by a factor of 𝜓(𝜎𝐴), or 𝜓(𝜏) in their notation.
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The symbol log𝑝 denotes the 𝑝-adic logarithm, defined by the power series log𝑝(1 − 𝑥) = ∑∞
𝑛=1 𝑥𝑛/𝑛

on its domain of convergence in 𝒪𝐹𝑝
, and extended by setting log𝑝(𝑝) = log𝑝(𝜁) = 0 for any root of

unity 𝜁 in 𝐹𝑝. To evaluate this at elements of 𝐹 , we identify 𝐹  with its image in 𝐹𝑝.

Applying Hida’s ordinary projection operator 𝑒ord to 𝜕𝑓+
𝜓  gives a classical modular form of level Γ0(𝑝)

and weight 2. The space of such forms is spanned by the Eisenstein series

𝐸(𝑝)
2 (𝑧) = 𝑝 − 1

24
+ ∑

∞

𝑛=1
( ∑

𝑑∣𝑛
(𝑑,𝑝)=1

𝑑)𝑞𝑛, (3.3.4)

along with eigenforms 𝑓 , which we normalise so that 𝑎1(𝑓) = 1 in the 𝑞-expansion at ∞.

Theorem 3.2 :  Set 𝐹 = ℚ(
√

𝐷) and let 𝑝 be a prime inert in 𝐹 . Write

𝑒ord(𝜕𝑓+
𝜓 ) = 𝜆0𝐸

(𝑝)
2 + ∑

𝑓
𝜆𝑓𝑓, where 𝜆0, 𝜆𝑓 ∈ 𝐹𝑝. (3.3.5)

Then 𝜆0 = 1
𝑝−1 log𝑝(𝑢𝜓), and if 𝑎𝑛(𝑓) ∈ ℚ for all 𝑛, then 𝜆𝑓 = 𝐿alg(1, 𝑓) log𝐸𝑓

(𝑃𝜓,𝑓), where 𝑃𝜓,𝑓  is
a Stark–Heegner point in 𝐸𝑓(ℂ𝑝), the elliptic curve attached to 𝑓  by the Eichler–Shimura construction,
and 𝐿alg(1, 𝑓) is the algebraic part of the value 𝐿(1, 𝑓).

Conjecture 3.19 in [DV22a] states that the points 𝑃𝜓,𝑓  are in fact algebraic, defined over the narrow
Hilbert class field of 𝐹 .

Proof :  By [DPV23, Prop. 4.7], 𝐺 ≔ 𝑒ord(𝜕𝑓+
𝜓 ) can be written as a generating series⁵

2𝐺(𝑧) = log𝑝(𝑢𝜓) + ∑
∞

𝑛=1
log𝑝(𝑇𝑛𝐽𝑤[𝜓])𝑞𝑛. (3.3.6)

Meanwhile, by [DPV23, eq. 29] the cocycle 𝐽𝑤 decomposes as follows:

𝐽𝑤 = 2
𝑝 − 1

𝐽DR + 2 ∑
𝑓

𝐿alg(1, 𝑓)𝐽−
𝑓 mod 𝐽ℤ

univ. (3.3.7)

Plugging the expression for 𝐽𝑤 into the 𝑛-th Fourier coefficient for 𝑛 ≥ 1 coprime to 𝑝, we obtain

𝑎𝑛(𝐺) = 2
𝑝 − 1

log𝑝(𝑇𝑛𝐽DR[𝜓]) + 2 ∑
𝑓

𝐿alg(1, 𝑓) log𝑝(𝑇𝑛𝐽−
𝑓 [𝜓])

= 2
𝑝 − 1

log𝑝(𝐽DR[𝜓]) ⋅ 𝑎𝑛(𝐸(𝑝)
2 ) + ∑

𝑓
𝐿alg(1, 𝑓) log𝑝(𝐽−

𝑓 [𝜓]) ⋅ 𝑎𝑛(𝑓).
(3.3.8)

Theorem B of [DPV23] combined with the proof of Theorem 4.8 in the same paper implies that
𝐽DR[𝜓] = 𝑢24

𝜓 , and conjecture 3.19 in [DV22a] implies that 𝐽−
𝑓 [𝜓] maps to 𝑃𝜓,𝑓 ∈ 𝐸𝑓(𝐹𝑝) under the

Tate uniformisation. Denoting the composite of the Tate map and log𝑝 by log𝐸𝑓
, we get that

𝑎𝑛(𝐺) = 24
𝑝 − 1

log𝑝(𝑢𝜓) ⋅ 𝑎𝑛(𝐸(𝑝)
2 ) + ∑

𝑓
𝐿alg(1, 𝑓) log𝐸𝑓

(𝑃𝜓,𝑓) ⋅ 𝑎𝑛(𝑓). (3.3.9)

As in the proof of [DPV23, Prop. 4.7], there exists a modular form in 𝑀2(Γ0(𝑝)) with prime to 𝑝
coefficients 𝑎𝑛(𝐺), which we denote by 𝑔. Now 𝑔 − 𝐺 is an oldform in 𝑀2(Γ0(𝑝)) as all its coefficients
of index coprime to 𝑝 vanish, hence equals 0, and this completes the proof. □

⁵There is a sign missing in the proof of Thm. 4.8 which propagates back to Prop. 4.7. As written, the constant term of
the Eisenstein series in the spectral expansion is off by a factor of −1. We assume here that the statement of Thm. 4.8 is
correct as written.
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This construction can be made completely explicit in a computer algebra system such as magma or sage,
at least to finite 𝑝-adic precision:

(i) Compute the terms {𝑎𝑛}𝑀
𝑛=1 of the 𝑞-expansion of 𝜕𝑓+

𝜓  in Equation (3.3.3) up to a certain bound 𝑀
by enumerating the elements 𝜈 ∈ 𝔡−1

+  of trace 𝑛 and factorising 𝜈𝔡. Since log𝑝(𝑥𝑦) = log𝑝(𝑥) +
log𝑝(𝑦) for any 𝑥, 𝑦 ∈ 𝐹𝑝, we only need to evaluate this once per 𝑛.

(ii) Compute a basis for the space of overconvergent modular forms to sufficiently high precision
using [Lau11, Algorithm 1].

(iii) Solve for 𝜕𝑓+
𝜓  and its constant term in this basis.

(iv) Compute the ordinary projection as a matrix on the basis, and apply to the vector defining 𝜕𝑓+
𝜓

to get 𝑒ord(𝜕𝑓+
𝜓 ). This is described in detail in step (6) of [Lau14, Alg. 2.1].

(v) Solve for 𝑒ord(𝜕𝑓+
𝜓 ) in an eigenbasis of 𝑀2(Γ0(𝑝)), which can be found explicitly using built-in

methods in sage and magma.

In practice, the first step is very slow due to the cost of evaluating 𝜓(𝔞) for many 𝔞. Moreover, the
coefficients of 𝜕𝑓+

𝜓  lie in an extension of 𝐹𝑝 generated by the values of 𝜓, which is of high degree if
the narrow class number of 𝐹  is large.

Improvements using quadratic forms

To get around these difficulties, we combine two observations: the first is that if we split the sum into
a sum over classes 𝐴 ∈ Cl+, then it suffices to compute sums corresponding to all pairs (𝜈, 𝔞) where
𝔞 ∣ 𝜈𝔡 and 𝔞 has class 𝐴 in the narrow class group. Moreover, these partial sums all lie in 𝐹𝑝. The
second is that by the correspondence between ideals of ℚ(

√
𝐷) and indefinite binary quadratic forms

of discriminant 𝐷, we can use reduction theory to enumerate all such ideals.

Proposition 3.3 ([Cox11, Ex. 7.21]) : There is a natural map from ideals of ℚ(
√

𝐷) to indefinite binary
quadratic forms of discriminant 𝐷 given by 𝔞 = 𝛼ℤ + 𝛽ℤ ↦ Nm(𝑥𝛼−𝑦𝛽)

Nm(𝔞) . This map respects the class
group structure in the following sense: two ideals are in the same narrow ideal class if and only if the
corresponding quadratic forms are equivalent under the right action of SL2(ℤ),

𝑄 ∘ (𝑟
𝑡

𝑠
𝑢) ≔ 𝑄(𝑟𝑥 + 𝑠𝑦, 𝑡𝑥 + 𝑢𝑦). (3.3.10)

Furthermore, the map induces a bijection between Cl+ and SL2(ℤ)-orbits of indefinite binary quadratic
forms of discriminant 𝐷.

We say that an indefinite quadratic form 𝑄(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 is reduced if 0 < 𝑏 <
√

𝐷 and
|
√

𝐷 − 2|𝑎|| < 𝑏. Any given form is equivalent to at most finitely many reduced forms.

Proposition 3.4 : Let 𝐹 = ℚ(
√

𝐷) be a real quadratic field and 𝐴 ∈ Cl+ a fixed class with associated
reduced quadratic form 𝑄0. Then there is a bijection between

𝕀(𝑛, 𝐴) ≔ {(𝔞, 𝜈) : 𝜈 ∈ 𝔡−1
+ , tr 𝜈 = 𝑛, 𝔞 ∣ (𝜈)𝔡, [𝔞] = 𝐴} (3.3.11)

and

𝑀(𝑛, 𝐴) ≔ {(𝑄 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2, 𝛾) : 𝛾 ∈ 𝑁𝑛, 𝑄 ∼ 𝑄𝛾
0 , 𝑎 > 0 > 𝑐}, (3.3.12)

where 𝑁𝑛 is a set of double coset representatives of

SL2(ℤ) \ {𝛾 ∈ Mat2(ℤ) : det 𝛾 = 𝑛}/StabSL2(ℤ)(𝑄0). (3.3.13)
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Proof :  This is essentially Proposition 2.15 with conductor 1, where the bijection is given explicitly. □

We call an element 𝑄 ∈ 𝑀(𝑛, 𝐴) a nearly reduced form since although it might not be reduced in the
strict sense, it is an element of the reduced cycle of 𝑄0, as defined in [BV07, Ch. 6]. Note that 𝑁𝑛 can
be found as a subset of the coset representatives of SL2(ℤ) \ {det 𝛾 = 𝑛}, which we can choose to be

(𝑛/𝑚
0

𝑗
𝑚), 𝑚 | 𝑛, 0 ≤ 𝑗 ≤ 𝑚 − 1, (𝑚, 𝑛/𝑚) = 1. (3.3.14)

The sets 𝑀(𝑛, 𝐴) and 𝑀(𝑑, 𝐴) for 𝑑 ∣ 𝑛 are not independent: if 𝑄 ∼ 𝑄𝛾𝑛
0  for some 𝛾𝑛 ∈ 𝑁𝑛, then

we can find corresponding elements 𝛾𝑑 and 𝛾𝑛/𝑑 such that 𝛾𝑛 = 𝛾𝑑𝛾𝑛/𝑑, and so we can generate it in
𝑀(𝑛, 𝐴) by applying suitable Hecke matrices to pairs in 𝑀(𝑑, 𝐴). This gives a recursive algorithm
for computing 𝑀(𝑛, 𝐴), described in Algorithm 1.

Algorithm 1: Compute the set 𝑀(𝑛, 𝐴) of nearly reduced forms

Input: A fundamental discriminant 𝐷, a class 𝐴 ∈ Cl+ represented by a reduced quadratic
form 𝑄, and a positive integer 𝑛.

Output: A set of sets {𝑀(𝑑, 𝐴)} indexed by divisors 𝑑 ∣ 𝑛.
1 if 𝑛 = 1 then
2 return {(𝑄, 1)}
3 𝑀𝑛 ← ∅
4 𝑝 ← smallest prime dividing 𝑛
5 𝑑 ← 𝑛

𝑝
6 𝑀𝑑 ← 𝑀(𝑑, 𝐴)
7 𝐻𝑝 ← {(𝑝/𝑚

0
𝑗
𝑚) : 𝑚 ∈ {1, 𝑝} and 0 ≤ 𝑗 < 𝑚}.

8 for (𝑄𝑑, 𝛾𝑑) ∈ 𝑀𝑑 do
9 for 𝛿 ∈ 𝐻𝑝 do

10 𝑄′ ← 𝑄𝛿
𝑑

11 if 𝑄′ ≁
SL2(ℤ)

𝑄 for all (𝑄, 𝛾) ∈ 𝑀𝑛 then

12 𝑄1, …, 𝑄𝑐 ← 𝚁𝚎𝚍𝚞𝚌𝚎𝚍𝙲𝚢𝚌𝚕𝚎(𝑄′)
13 𝑀𝑛 ← 𝑀𝑛 ∪ {(𝑄1, 𝛿𝛾𝑑), …(𝑄1, 𝛿𝛾𝑑)}
14 return {𝑀𝑑 : 𝑑 ∣ 𝑛}

It is convenient to work with so-called odd indicator functions on Cl+, meaning functions of the form

𝟏*
𝐴(𝐵) ≔ 𝟏𝐴(𝐵) − 𝟏𝐴[𝔡](𝐵) =

{{
{{
{
{{
{{1 if 𝐵 = 𝐴

−1 if 𝐵 = 𝐴[𝔡]

0 otherwise.

(3.3.15)

We can pass between odd characters and odd indicator functions via the change of basis formulae

𝜓(𝐴) = 1
2

∑
𝐵∈ Cl+

𝜓(𝐵)𝟏*
𝐵(𝐴) and 𝟏*

𝐴(𝐵) = 2
ℎ+ ∑

𝜓odd

𝜓(𝐵)𝜓(𝐴). (3.3.16)

These are simple consequences of the orthogonality relations for characters, see [Ser77, §2.3]. By
linearity, we obtain the following version of Proposition 3.1:
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Corollary 3.5 :  Fix an indefinite quadratic form 𝑄 corresponding to a class 𝐴 ∈ Cl+. The series
𝜕𝑓+

𝑄(𝑞) = log𝑝(𝑢𝐴) + ∑∞
𝑛=1 𝑎𝑛(𝜕𝑓+

𝑄), where

𝑎𝑛(𝜕𝑓+
𝑄) = ∑

(𝑄,𝛾)∈𝑀(𝑛,𝐴)
𝑄=⟨𝑎,𝑏,𝑐⟩
(𝑎,𝑝)=1

log𝑝(
−𝑏 + 𝑛

√
𝐷

2𝑎
) − ∑

(𝑄,𝛾)∈𝑀(𝑛,𝐴[𝔡])
𝑄=⟨𝑎,𝑏,𝑐⟩
(𝑎,𝑝)=1

log𝑝(
−𝑏 + 𝑛

√
𝐷

2𝑎
)(3.3.17)

defines an 𝑟-overconvergent modular form of weight 2 and tame level 1 for any 𝑟 < 𝑝/(𝑝 + 1).

Proof :  Define 𝜕𝑓+
𝑄(𝑞) ≔ 2

ℎ+ ∑𝜓 odd 𝜓(𝐴)𝜕𝑓+
𝜓 (𝑞), which has the effect of replacing 𝜓(𝔞) in Equa-

tion  (3.3.3) with 𝟙*
𝐴([𝔞]). Being a linear combination of overconvergent modular forms, it is itself

overconvergent of the same weight, level and rate of overconvergence.

Using Proposition 3.4, we can rewrite the series in terms of 𝑀(𝑛, 𝐴) and 𝑀(𝑛, 𝐴[𝔡]), showing that
Equation (3.3.17) holds for the non-constant terms. To compute the constant term of 𝜕𝑓+

𝑄(𝑞), note that
formally, 𝑢𝜓 = ∑𝐴∈ Cl+ 𝜓(𝐴) ⋅ 𝑢𝐴, so

2
ℎ+ ∑

𝜓  odd
𝜓(𝐴) ⋅ 𝑢𝜓

= ∑
𝐴∈ Cl+

2
ℎ+ ∑

𝜓  odd
𝜓(𝐴)𝜓(𝐴) ⋅ 𝑢𝐴

= ∑
𝐴∈ Cl+

𝟏*
𝐴 ⋅ 𝑢𝐴

= 𝑢𝐴 ⋅ 𝑢−1
𝐴[𝔡].

(3.3.18)

The condition 𝑢𝐴 = 1/𝑢𝐴 is equivalent to 𝑢𝐴[𝔡] = 𝑢−1
𝐴 , so

2
ℎ+ ∑

𝜓 odd

1
2

log𝑝(𝑢𝜓) = log𝑝(𝑢𝐴), (3.3.19)

finishing the proof. □

This gives a reasonably efficient algorithm for computing log𝑝(𝑢𝐴), described in Algorithm 2.

Algorithm 2: Computing log𝑝(𝑢𝐴)

Input: A real quadratic field ℚ(
√

𝐷) in which 𝑝 is inert, a class 𝐴 ∈ Cl+ represented by a quadratic
form 𝑄0, and a positive integer 𝑁 .

Output: log𝑝(𝑢𝐴) as an element of 𝐹𝑝 to 𝑝-adic precision 𝑁
1 𝑚 ← 𝑝 ⋅ 𝑁
2 Compute {𝑀(𝑛, 𝐴)}𝑛≤𝑚 using Algorithm 1
3 Compute {𝑎𝑛(𝜕𝑓+

𝑄)}
𝑛≤𝑚

 using Equation (3.3.17)

4 𝐵 ← 𝙺𝚊𝚝𝚣𝙱𝚊𝚜𝚒𝚜 (𝑀†
2 (SL2(ℤ))) mod 𝑝𝑁 , 𝑞𝑚)

5 log𝑝(𝑢𝐴) ← 𝙵𝚒𝚗𝚍𝙲𝚘𝚗𝚜𝚝𝚊𝚗𝚝𝚃𝚎𝚛𝚖 ({𝑎𝑛}𝑛≤𝑚, 𝐵)

The step 𝙺𝚊𝚝𝚣𝙱𝚊𝚜𝚒𝚜 is described in step 3 of [Lau11, Algorithm 1]. Roughly speaking, a Katz basis
form is the ratio of a classical modular form of weight 2 + (𝑝 − 1)𝑖 and 𝐸𝑖

𝑝−1. Computing finitely
many of these to sufficiently high finite precision, we obtain a basis for a subspace of 𝑀†

2 (SL2(ℤ)) in
which we can uniquely detect 𝜕𝑓+

𝑄. Further details and proofs can be found in [Kat73, Chap. 2].
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The function 𝙵𝚒𝚗𝚍𝙲𝚘𝚗𝚜𝚝𝚃𝚎𝚛𝚖 first solves a linear system obtained by solving for the higher order
coefficients of 𝜕𝑓+

𝑄 in terms of those in 𝐵, so that the constant term of 𝜕𝑓+
𝑄 is a linear combination

of the constant terms of the Katz basis forms. The number of terms 𝑚 computed in the 𝑞-expansion
of 𝜕𝑓+

𝑄 ensures that it can always be found in the Katz basis from [Lau11, Algorithm 1], although in
practice smaller values of 𝑚 are often sufficient.

With a little extra work we can compute the spectral expansion of 𝑒ord(𝜕𝑓+
𝑄). To compute the ordinary

projection, we use a trick due to Lauder. The idea is to compute a matrix for the 𝑈𝑝-operator acting
on the Katz basis 𝐵 from 1, computed to precision dim 𝑀𝑘′(SL2(ℤ)), where 𝑘′ ≔ 2 + (𝑝 − 1)⌊𝑁(𝑝 +
1)/𝑝⌋. Since this approximate basis is finite, the matrix 𝑈𝑝 has finite rank. Raising the matrix to the
power 2𝑚 and applying to the vector defining 𝜕𝑓+

𝜓  then gives the ordinary projection. We denote this
step by 𝙾𝚛𝚍𝚒𝚗𝚊𝚛𝚢𝙿𝚛𝚘𝚓𝚎𝚌𝚝𝚒𝚘𝚗 in Algorithm 3.

Algorithm 3: Computing the spectral expansion of 𝑒ord(𝜕𝑓+
𝑄)

Input: A real quadratic field ℚ(
√

𝐷) in which 𝑝 is inert, a class 𝐴 ∈ Cl+ represented by a quadratic
form 𝑄, and an integer 𝑁 .

Output: The coefficients 𝜆0 and {𝜆𝑓} of 𝑒ord(𝜕𝑓+
𝑄) as elements of 𝐹𝑝 to 𝑝-adic precision 𝑁 .

1 𝑚 ← dim 𝑀2+(𝑝−1)⌊𝑁(𝑝+1)/𝑝⌋(SL2(ℤ))
2 Compute {𝑀(𝑛, 𝐴)}𝑛≤𝑚 using Algorithm 1
3 Compute 𝐵 mod(𝑝𝑚, 𝑞𝑁) and {𝑎𝑛(𝜕𝑓+

𝜓 )}
𝑁

𝑛=0
 as in Algorithm 2

4 𝐺 ← 𝙾𝚛𝚍𝚒𝚗𝚊𝚛𝚢𝙿𝚛𝚘𝚓𝚎𝚌𝚝𝚒𝚘𝚗 ({𝑎𝑛(𝜕𝑓+
𝜓 )}

𝑁

𝑛=0
, 𝐵)

5 𝑀 ← 𝑀2(Γ0(𝑝)) ⊗ 𝐹𝑝

6 {𝜆0}, {𝜆𝑓}
𝑓

← 𝙵𝚒𝚗𝚍𝙸𝚗𝚂𝚙𝚊𝚌𝚎(𝐺, 𝑀)

Here 𝙵𝚒𝚗𝚍𝙸𝚗𝚂𝚙𝚊𝚌𝚎(𝐺, 𝑀) solves for 𝐺 = 𝑒ord(𝜕𝑓+
𝑄) in terms of the eigenbasis for 𝑀2(Γ0(𝑝)) and

returns the corresponding coefficients, which are precisely 𝜆0 and the 𝜆𝑓  for eigenforms 𝑓 . The same
algorithm works for 𝑒ord(𝜕𝑓+

𝜓 ).

4 From logarithms to invariants
In this section we explain how to recover 𝑢𝐴 from log𝑝(𝑢𝐴) and 𝑃𝜓,𝑓  from 𝜆𝑓 .

4.1 Recovering a Gross–Stark unit from its 𝑝-adic logarithm
The “virtual units” 𝑢𝐴 are difficult to work with because they are formal powers of units in 𝐻 , and
thus do not have a unique minimal polynomial. Instead, we use the Brumer–Stark conjecture and look
instead for the element 𝜀𝐴 ∈ 𝒪𝐻 [1/𝑝]× satisfying 𝑒 ⋅ 𝑢𝐴 = 𝜀𝐴 ⊗ 1, where 𝑒 ≔ #𝜇(𝐻). This property
implies that log𝑝(𝑢𝐴) = 1

𝑒 log𝑝(𝜀𝐴). Note that while 𝑢𝐴 is determined uniquely by Equation (3.2.2)
because 𝒪𝐻 [1/𝑝]× ⊗ ℚ is torsion-free, 𝜀𝐴 is only unique up to roots of unity in 𝐻 . This ambiguity
is natural for several reasons. First, the Brumer–Stark units over ℚ constructed in [Gro81] are Gauss
sums, which by definition require a choice of a root of unity to determine the additive character.
Second, 𝜀𝐴 being defined only up to torsion in 𝒪𝐻 [1/𝑝]× mirrors the fact that Stark–Heegner points
are defined up to torsion in 𝐸(𝐻).

We can find the exact value of 𝑒 without computing the unit group of 𝒪𝐻  directly by noting that any
root of unity in 𝐻  will lie in the genus field of 𝐹 , the largest subextension of 𝐻  which is abelian over
ℚ. This has the following classical description:
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Proposition 4.1 ([Lem00, Prop. 2.19]) : Let 𝐹 = ℚ(
√

𝐷), and let 𝐷 = 𝐷1⋯𝐷𝑡 be the factorisation of
𝐷 into prime discriminants, meaning each 𝐷𝑖 is either −4, −8, 8 or (−1)(𝑝−1)/2𝑝 for an odd prime 𝑝.
Then the genus field of 𝐹  equals ℚ(√𝐷1, …, √𝐷𝑡).

Since the only quadratic extensions with other roots of unity than ±1 are ℚ(
√

−1) and ℚ(
√

−3), we
obtain the following:

Corollary 4.2 :  The torsion subgroup of 𝒪×
𝐻  is given by

#𝜇(𝐻) =

{
{
{
{
{
{
{12 if 12 ∣ 𝐷 and 𝐷

4 ≡ 3 mod 4,
6 if 3 ∣ 𝐷 and either 4 ∤ 𝐷 or 𝐷

4 ≡ 1 mod 4,
4 if 3 ∤ 𝐷, 4 ∣ 𝐷 and 𝐷

4 ≡ 3 mod 4,
2 otherwise.

(4.1.1)

The kernel of log𝑝 is much larger than that of the archimedean log, containing powers of 𝑝 as well as
roots of unity. Passing from log𝑝(𝜀𝐴) to 𝜀𝐴 requires knowing both ord𝔓 𝜀𝐴 and 𝜀𝐴 mod 𝔓. We can
deal with the latter by looping through all the roots of unity in 𝐻𝔓, of which there are 𝑝2 − 1, and test
each product separately. This, along with the computation of the Katz basis, are the main bottlenecks
in the algorithm for large values of 𝑝. Certain Stark units modulo 𝑝 appear in a recent conjecture of
Harris–Venkatesh [HV19], and it would be interesting to see if an analogous conjecture could describe
the mod 𝔓 reduction of 𝑢𝐴.

To find the 𝔓-valuation of 𝜀𝐴, we use a classical theorem due to C. Meyer which we now describe. Let
𝐴 ∈ Cl+ be a narrow ideal class, and recall that the corresponding partial 𝜁-function is given by

𝜁(𝑠, 𝐴) ≔ ∑
𝔞≤𝒪𝐹 , [𝔞]=𝐴

1
Nm (𝔞)𝑠 , ℜ(𝑠) > 1. (4.1.2)

Let 𝜁−(𝑠, 𝐴) ≔ 1
2(𝜁(𝑠, 𝐴) − 𝜁(𝑠, 𝐴[𝔡])). This is non-zero if and only if 𝐹  has no unit of negative norm,

which is our running assumption.

Let 𝜀𝐹  denote the fundamental unit of 𝐹 , by assumption satisfying Nm(𝜀𝐹 ) = 1, and fix a represen-
tative 𝔞 ≤ 𝒪𝐾  for 𝐴. A choice of basis gives an identification of 𝔞 with ℤ2, and multiplication by 𝜀𝐹
gives rise to an element 𝛾𝔞 ∈ SL2(ℤ). Using the quadratic form 𝑄 ≔ 𝑄1𝑥2 + 𝑄2𝑥𝑦 + 𝑄3𝑦2 associated
to 𝔞 by Proposition 3.3, we may describe this matrix explicitly. Suppose 𝜀𝐹 = 𝑢 + 𝑡

√
𝐷. Then

𝛾𝔞 = (𝑡 + 𝑄2𝑢
−2𝑄1𝑢

2𝑄3𝑢
𝑡 − 𝑄2𝑢

) (4.1.3)

fixes 𝑄. Replacing 𝔞 with 𝔞′ in the same class 𝐴 has the effect of conjugating 𝛾𝔞, so the conjugacy
class 𝛾𝐴 = [𝛾𝔞] is well-defined.

Let Φ : SL2(ℤ) → ℝ denote the Dedekind symbol defined by

Φ(𝑎
𝑐

𝑏
𝑑) ≔ {

𝑏/𝑑 if 𝑐 = 0,
𝑎+𝑑

𝑐 − 12 sgn (𝑐) ⋅ 𝑠(𝑎, 𝑐) if 𝑐 ≠ 0, (4.1.4)

where 𝑠(𝑎, 𝑐) is the Dedekind sum

𝑠(𝑎, 𝑐) ≔ ∑
|𝑐|

𝑘=1
((𝑎𝑘

𝑐
))((𝑘

𝑐
)) for (𝑎, 𝑐) = 1, 𝑐 ≠ 0, (4.1.5)

with ((𝑥)) = 0 if 𝑥 ∈ ℤ and ((𝑥)) = 𝑥 − ⌊𝑥⌋ − 1/2 otherwise.
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By adding a correction term to Φ, Rademacher showed that the eponymous Rademacher symbol,

Ψ(𝛾) ≔ Φ(𝛾) − 3 sgn (𝑐(𝑎 + 𝑑)), (4.1.6)

is integer-valued and depends only on the conjugacy class of 𝛾.

Theorem 4.3 (Meyer) : Fix a class 𝐴 ∈ Cl+, and let 𝛾𝐴 ∈ SL2(ℤ) be the associated matrix. Then

𝜁−(0, 𝐴) = 1
12

Ψ(𝛾𝐴). (4.1.7)

This follows from a version of Kronecker’s limit formula for real quadratic fields, and we give an
exposition of its proof in Appendix A.

Corollary 4.4 : Let 𝑢𝐴 be a Gross–Stark unit attached to a narrow ideal class 𝐴. Then

ord𝔓 𝑢𝐴 = − 1
12

Ψ(𝛾𝐴). (4.1.8)

Similarly, for the associated Brumer–Stark unit 𝜀𝐴,

ord𝔓 𝜀𝐴 = − 𝑒
12

Ψ(𝛾𝐴), (4.1.9)

where 𝑒 = #𝜇(𝐻).

Proof :  By Equation (3.2.2),

ord𝔓 𝑢𝐴 = 1
2
(ord𝔓 𝑢𝐴 − ord𝔓 𝑢𝐴[𝔡])

= −1
2
(𝜁(0, 𝐴) − 𝜁(0, 𝐴[𝔡])

= −𝜁−(0, 𝐴) = − 1
12

Ψ(𝛾𝐴).

(4.1.10)

The second claim follows immediately from the identity 𝑒 ⋅ 𝑢𝐴 = 𝜀𝐴 ⊗ 1. □

Algorithm 4 describes how to efficiently compute ord𝔓 𝜀𝐴 using Meyer’s theorem.

Algorithm 4: Compute ord𝔓 𝜀𝐴 using Meyer’s formula.

Input: An indefinite binary quadratic form 𝑄(𝑥, 𝑦) = 𝑄1𝑥2 + 𝑄2𝑥𝑦 + 𝑄3𝑦2 of square-free
discriminant 𝐷, representing a narrow ideal class 𝐴 of 𝐹 = ℚ(

√
𝐷).

Output: ord𝔭 𝜀𝐴 for any 𝔭 ∣ 𝑝.
1 𝑡, 𝑢 ← 𝙿𝚎𝚕𝚕𝚂𝚘𝚕𝚞𝚝𝚒𝚘𝚗 (𝐷)
2 𝛾𝐴 ≔ (𝑎

𝑐
𝑏
𝑑) ← (𝑡+𝑄2𝑢

−2𝑄1𝑢
2𝑄3𝑢
𝑡−𝑄2𝑢)

3 if 𝑐 = 0:
4 Φ ← 𝑏/𝑑
5 else:
6 Φ ← 𝑎+𝑑

𝑐 − 12 sgn(𝑐) ⋅ 𝙳𝚎𝚍𝚎𝚔𝚒𝚗𝚍𝚂𝚞𝚖 (𝑎, 𝑐)
7 Ψ ← Φ − 3 sgn (𝑐(𝑎 + 𝑑))
8 return −𝑒 ⋅ Ψ/12.

The fundamental solution of Pell’s equation grows very quickly as 𝐷 gets large, so computing
Dedekind sums by evaluating Equation (4.1.5) directly can be very slow for large values of 𝐷. Instead
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we use a formula from [Apo90, Ex. 3.10]: By replacing 𝑐 by −𝑐 and 𝑎 by 𝑎 mod 𝑐, we can assume
that 0 < 𝑎 < 𝑐. Let 𝑟0 ≔ 𝑐, 𝑟1 ≔ 𝑎 and define 𝑟𝑗 recursively to be the remainders in the Euclidean
algorithm applied to 𝑎 and 𝑐, satisfying 𝑟𝑗+1 ≡ 𝑟𝑗−1 mod 𝑟𝑗 and 1 = 𝑟𝑛+1 < …𝑟𝑗+1 < 𝑟𝑗… < 𝑟0 for
all 1 ≤ 𝑗 ≤ 𝑛 − 1. Then

𝑠(𝑎, 𝑐) = 1
12

∑
𝑛+1

𝑗=1
(

𝑟2
𝑗 + 𝑟2

𝑗−1 + 1
𝑟𝑗𝑟𝑗−1

) − (−1)𝑛 + 1
8

. (4.1.11)

This is very efficient in practice.

Remark 4.5 :  It is also possible to compute the value of 𝜁−(0, 𝐴) using a theorem due to Zagier,
[Zag81, §14, Satz 2], which expresses 𝜁−(0, 𝐴) as an elementary sum of numbers appearing in the
reduction algorithm for indefinite quadratic forms. We thank an anonymous referee for pointing this
out. Comparing Zagier reduction and Algorithm 4 in the sage implementation, it turns out that Zagier’s
formula is much faster in practice. However, if we compute the automorph using reduction theory
instead of by solving Pell’s equation, then the algorithms perform roughly equally well.

By the minimal polynomial of 𝜀 we mean the irreducible polynomial 𝑃  of minimal degree satisfying
𝑃(𝜀) = 0 with coefficients in 𝒪𝐹  not all divisible by the same prime, such that the leading term is a
positive power of 𝑝.

Lemma 4.6 :  Let 𝜀 be a Brumer–Stark unit in 𝒪𝐻 [1/𝑝]×, and let 𝑃(𝑇 ) = ∑𝑑
𝑖=0 𝑎𝑖𝑇 𝑖 = 𝑎𝑑 ∏𝜎∈𝐺(𝑇 −

𝜎(𝜀)) be its minimal polynomial. Then:

(i) 𝜀 is a primitive element of 𝐻  over 𝐹 , 𝐻 = 𝐹(𝜀).

(ii) 𝑃  is of degree ℎ+, and after possibly twisting 𝜀 by a root of unity in 𝐻 , has rational integer coefficients.

(iii) 𝑃  is reciprocal, 𝑎𝑖 = 𝑎𝑑−𝑖 for all 0 ≤ 𝑖 ≤ 𝑑.

Proof :  (i) We follow the strategy of [Rob97, Théorème 2.3]. Suppose 𝜎(𝜀) = 𝜀 for some 𝜎 ∈ 𝐺. For
any character 𝜒 : 𝐺 → ℂ×, let 𝐿𝑆(𝑠, 𝜒) denote the 𝐿-function of 𝜒 with the Euler factor at 𝔭 = (𝑝) ⊂
𝒪𝐹  removed. Since 𝜎𝔭 = 1, 𝜒(𝜎𝔭) = 1, and so we have 𝐿𝑆(0, 𝜒) = 0. A consequence of the Brumer–
Stark conjecture, see for example [Tat81, Prop. (5.5) and Conj. (4.2)], is that 𝜀 satisfies

𝐿′
𝑆(0, 𝜒) = −1

𝑒
∑
𝜎′∈𝐺

𝜒(𝜎′) log |𝜎′(𝜀)|𝔓 (4.1.12)

for all 𝜒. It follows that

𝐿′
𝑆(0, 𝜒) = −1

𝑒
∑
𝜎′∈𝐺

𝜒(𝜎′) log |𝜎′(𝜀)|𝔓

= −1
𝑒

∑
𝜎′∈𝐺

𝜒(𝜎′) log |𝜎′𝜎(𝜀)|𝔓

= −𝜒(𝜎)
𝑒

∑
𝜎″∈𝐺

𝜒(𝜎″) log |𝜎″(𝜀)|𝔓

= 𝜒(𝜎)𝐿′
𝑆(0, 𝜒).

(4.1.13)

If 𝜒 is odd, then 𝐿′
𝑆(0, 𝜒) ≠ 0 by [Gro81, Eq. 3.1], so 𝜎 ∈ ⋂𝜒  odd ker 𝜒. Fix an odd character 𝜓, and

note that there is a bijection between even characters 𝜒 and the set of characters 𝜓 ⋅ 𝜓′ where 𝜓′ runs
over all odd characters. Now
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∑
𝜒∈𝐺

𝜒(𝜎) = ∑
𝜒 odd

𝜒(𝜎) + ∑
𝜒 even

𝜒(𝜎) = (1 + 𝜓(𝜎)) ∑
𝜓′ odd

𝜓′(𝜎) = 2#{𝜒 odd} = ℎ+,(4.1.14)

and so 𝜎 = 1.

(ii) The degree of 𝑃  is ℎ+ since 𝜀 is primitive. Let 𝜏  be an RM-point in the sense of [DPV23]. As
described in [DV21, §3.2], Gal(𝐻/ℚ) ≅ Gal(𝐻/𝐹) ⋊ Gal(𝐹/ℚ), and we can identify the image of
the generator of Gal(𝐹/ℚ) with 𝜎𝔓.

By the Shimura reciprocity conjecture [DV21, Conj. 3.14], 𝜎𝔓(𝐽DR[𝜏 ]) = 𝐽DR[𝜏 ′]. If we let 𝜏  be the
RM point corresponding to the identity class in Cl+, then 𝐽DR[𝜏 ] = 𝐽DR[𝜏 ′], and so 𝐽DR[𝜏 ] is fixed
by 𝜎𝔓. Thus the minimal polynomial of 𝐽DR[𝜏 ] is fixed by 𝜎𝔓, and as 𝜀 is a conjugate of 𝐽DR[𝜏 ] up to
roots of unity in 𝐻 , the result follows.

(iii) 𝑃  being reciprocal is equivalent to 𝑃(𝑇 ) = 𝑇 𝑑𝑃(1/𝑇 ), which is true if for any non-zero root 𝑣
of 𝑃 , 1/𝑣 is also a root of 𝑃 . But with 𝜅 denoting complex conjugation in 𝐺, Equation (3.2.2) implies
that 𝜅(𝜎(𝜀)) = 1/𝜎(𝜀). □

Knowing the 𝔓-valuations of all the conjugates of 𝜀 lets us bound the valuations of the coefficients of
𝑃  using the following lemma.

Lemma 4.7 :  Let 𝑣0…, 𝑣𝑑/2−1 be the 𝔓-valuations of the conjugates of 𝜀 which are positive, ordered
so that 𝑣0 ≥ 𝑣1 ≥ … ≥ 𝑣𝑑/2−1 ≥ 0, and 𝑣𝑑/2 = 0. Then for any 𝑖 = 0, …, 𝑑/2 we have ord𝑝(𝑎𝑖) ≥
∑𝑑/2−𝑖

𝑗=0 𝑣𝑑/2−𝑗. In particular, ord𝑝(𝑎𝑑) = ord𝑝(𝑎0) = ∑𝑑/2
𝑗=0 𝑣𝑗.

Proof : By Lemma 4.6 (iii), the Newton polygon of 𝑃  is symmetric around the vertical line 𝑥 = 𝑑/2,
and its slopes are precisely equal to the 𝑝-valuations of the roots of 𝑃 , the conjugates of 𝑢. Since 𝑃
is normalised, we know that ord𝑝 𝑎𝑑/2 = 0, so the Newton polygon of 𝑃  intersects the 𝑥-axis at the
point (0, 𝑑/2). To estimate the remaining coefficients, note that the Newton polygon of 𝑃  will always
lie in the convex hull of the polygon determined as follows: the boundary is symmetric around the
line 𝑥 = 𝑑/2, and is determined by the points (𝑖, ∑𝑑/2−𝑖

𝑗=0 𝑣𝑗) for 0 ≤ 𝑖 ≤ 𝑑/2. Since the 𝑦-coordinate
of a point determining the Newton polygon of 𝑃  is the 𝔓-valuation of the corresponding coefficient,
this gives the required inequality. □

Figure 2:  The largest possible Newton polygon determined by the 𝔓-valuations of the conjugates of
a Brumer–Stark unit over ℚ(

√
469), where the vector of valuations is given by (−3, −1, −1, 1, 1, 3).

Let 𝛼 = (𝛼1, 𝛼2) ∈ ℤ/𝑝𝑚 × ℤ/𝑝𝑚 be an approximation of exp𝑝(log𝑝(𝜀𝐴)), where for a fixed gener-
ator 𝑠 of ℚ𝑝2  over ℚ𝑝 we define the natural map

ℤ𝑝2 = ℤ𝑝[𝑠] → ℤ/𝑝𝑚 × ℤ/𝑝𝑚 by 𝑎 + 𝑏𝑠 ↦ (𝑎 mod 𝑝𝑚, 𝑏 mod 𝑝𝑚). (4.1.15)

To find the minimal polynomial 𝑃  of 𝛼, we apply the LLL algorithm to look for linear integral relations
between powers of 𝛼. This is a standard application of lattice reduction algorithms, and a more detailed
exposition can be found in [Coh93, § 2.7.2]. Roughly speaking, the LLL algorithm takes as input a basis
𝑏1, …, 𝑏𝑑 for a Euclidean lattice Λ ⊂ ℝ𝑛, and returns a “better” basis 𝑏*

1, …, 𝑏*
𝑑 for Λ, in the sense that
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𝑏*
1 has relatively small norm and that the vectors are approximately orthogonal. Let 𝑣0, …, 𝑣𝑑/2−1 be

the 𝔓-valuations of the conjugates of 𝜀 ordered as in Lemma 4.7, computed using Algorithm 4. We
want to find a short nontrivial vector in the lattice spanned by the rows of the following (𝑑/2 + 3) ×
(𝑑/2 + 3)-matrix:

(
((
((
((
((
((
((
((
((

1
0
0
⋮
0
0
0

0
1
0
⋮
0
0
0

0
0
1
⋮
0
0
0

…
…
…
⋱
…
…
…

0
0
0
⋮
1
0
0

𝑝𝑣0(1 + 𝛼𝑑)1
𝑝𝑣1(𝛼1 + 𝛼𝑑−1)1
𝑝𝑣2(𝛼2 + 𝛼𝑑−2)1

⋮
(𝛼𝑑/2)

1
𝑝𝑚

0

𝑝𝑣0(1 + 𝛼𝑑)2
𝑝𝑣1(𝛼1 + 𝛼𝑑−1)2
𝑝𝑣2(𝛼2 + 𝛼𝑑−2)2

⋮
(𝛼𝑑/2)

2
0

𝑝𝑚
)
))
))
))
))
))
))
))
))

(4.1.16)

A vector

𝑤 =(𝑛0, …, 𝑛𝑑/2, 𝑛𝑑/2𝛼
𝑑/2
1 + ∑

𝑑/2−1

𝑖=0
𝑝𝑣𝑖𝑛𝑖(𝛼𝑖 + 𝛼𝑑−𝑖 + 𝑝𝑚)

1
,

𝑛𝑑/2𝛼
𝑑/2
2 + ∑

𝑑/2−1

𝑖=0
𝑝𝑣𝑖𝑛𝑖(𝛼𝑖 + 𝛼𝑑−𝑖 + 𝑝𝑚)

2 ),
(4.1.17)

in the lattice is small only if 𝑛𝑑/2𝛼𝑑/2 + ∑𝑑/2−1
𝑖=0 𝑝𝑣𝑖𝑛𝑖(𝛼𝑖 + 𝛼𝑑−𝑖) ≡ 0 mod 𝑝𝑚. Then the polynomial

∑𝑑/2
𝑖=0 𝑝𝑣𝑖𝑛𝑖𝑥𝑖 + ∑𝑑

𝑖=𝑑/2+1 𝑝𝑣𝑑/2−𝑖𝑛𝑑−𝑖𝑥𝑖 is a good candidate for the minimal polynomial of 𝑃  over ℚ.
This suggests the following algorithm:

Algorithm 5: Find the minimal polynomial of 𝜀𝐴 from the 𝑝-adic approximation of log𝑝 𝜀𝐴

Input: 𝛼 ∈ ℚ𝑝2  an approximation to exp𝑝(log𝑝 𝜀𝐴) and 𝑣0, …𝑣𝑑/2 as in Lemma 4.7.
Output: The minimal polynomial 𝑃 ∈ ℤ[𝑥] of 𝜀𝐴

1 𝜁 ← primitive (𝑝2 − 1)-st root of unity in ℚ𝑝2

2 𝛼′ ← 𝜁𝑘𝛼 𝑀 ← matrix described in Equation (4.1.16) with 𝛼′ in place of 𝛼
3 𝑣 = (𝑛𝑖) ← first vector returned by 𝙻𝙻𝙻(𝑀)
4 𝑃 ← ∑𝑑/2

𝑖=0 𝑛𝑖𝑥𝑖 + ∑𝑑
𝑖=𝑑/2+1 𝑛𝑑−𝑖𝑥𝑖

5 𝙸𝚜𝙱𝚂𝚄𝚗𝚒𝚝𝙲𝚑𝚊𝚛𝙿𝚘𝚕𝚢(𝑃).

In practice, it is convenient to pick 𝐴 ∈ Cl+ so that ord𝔓 𝜀𝐴 is as close to 0 as possible. A similar
algorithm for recognising an algebraic number from a 𝑝-adic approximation is given in [Gau+06, §4.2].

The function IsBSUnitCharPoly performs a series of tests in order, and returns False if any test fails:

(i) if 𝑃  is irreducible over 𝐹 , hence generates an extension of 𝐹  of degree ℎ+,

(ii) if the absolute discriminant of 𝐻′ ≔ 𝐹[𝑥]/(𝑃 (𝑥)) is a power of 𝐷, which is equivalent to 𝐻′/𝐹
being unramified at all finite places,

(iii) if 𝐻′/𝐹  is abelian.
At this point we know that 𝐻′ ≅ 𝐻 , but to ensure that 𝑃  is the minimal polynomial of a Brumer–
Stark unit and not just any generator of 𝐻 , we perform a further test:

(iv) test if the extension generated by 𝑃(𝑥𝑒) is a central extension.
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If all of these tests are passed, then it is quite likely, although not absolutely certain, that the polynomial
𝑃  has a Brumer–Stark unit as a root. One should also test if 𝑃(𝑥𝑒) generates an abelian extension
of 𝐹 , but this is computationally unfeasible when both ℎ+ and 𝑒 are large. Furthermore, we need to
verify that (𝜀) ⊂ 𝒪𝐻  is only divisible by primes of 𝐻  above 𝑝, and that

ord𝔓(𝜎𝐴(𝜀)) = −𝑒 ⋅ 𝜁−(0, 𝐴) for all 𝐴 ∈ Cl+ . (4.1.18)

To check the second condition, given a polynomial 𝑃  with a chosen root 𝜀, we do the following:
for each prime 𝔓 ⊂ 𝒪𝐻  dividing 𝑝 satisfying ord𝔓(𝜀) = −𝑒 ⋅ 𝜁−(0, [𝒪𝐹 ]), test whether all 𝐴 ∈ Cl+
satisfy Equation (4.1.18) by computing 𝜎𝐴(𝜀) explicitly. If one such 𝔓 works, then the second condition
is verified. The Artin map 𝐴 ↦ 𝜎𝐴 is conveniently provided in magma by the function ArtinMap.

Remark 4.8 : The requirement that the extension should be central was part of Stark’s original conjec-
ture, see [Sta80, Conj. 1], and in [PRS11, p. 40] Stark notes that this was sufficient for the factorisation of
regulators which motivated it. The condition that the extension should in fact be abelian was observed
by Tate, leading to the formulation of the Brumer–Stark conjecture. This is now known to be true, by
the work of Dasgupta and Kakde [DK23].

It would be interesting to know whether “central implies abelian” in this situation, that is: if 𝛼 is a 𝑝-
unit which generates 𝐻  with 𝔓𝜎-valuations specified by Equation (4.1.9) and 𝑒

√
𝛼 generates a central

extension of 𝐹 , is the extension actually abelian?

To describe the test in (4), it is convenient to introduce some notation: Let 𝐾 ≔ 𝐻( 𝑒
√𝜀𝐴) and 𝐺𝑒 ≔

Gal(𝐾/𝐻). By Kummer theory, 𝐺𝑒 ≅ ℤ/𝑒ℤ. In this case Γ ≔ Gal(𝐾/𝐹) is a group extension of 𝐺𝑒
and 𝐺,

1 → 𝐺𝑒 → Γ → 𝐺 → 1. (4.1.19)

The following lemma gives a simple criterion for deciding whether Γ is a central extension, that is, if
𝐺𝑒 lies in the centre of Γ, without computing Γ directly:

Lemma 4.9 : Let 𝐹  be a number field, 𝐻/𝐹  a Galois extension containing all 𝑒-th roots of unity, and
𝛼 ∈ 𝐻×. Define 𝜒cyc : 𝐺 ≔ Gal(𝐻/𝐹) → (ℤ/𝑒ℤ)× by 𝜁𝜒cyc(𝜎) = 𝜎(𝜁) for any 𝜁 ∈ 𝜇𝑒(𝐻). Then 𝐾 ≔
𝐻( 𝑒

√
𝛼)/𝐹  is a central extension if and only if for all 𝜎 ∈ 𝐺 there exists some 𝛽 ∈ 𝐻× such that 𝜎(𝛼) =

𝛼𝜒cyc(𝜎)𝛽𝑒.

Proof :  There is a natural action of 𝐺 on 𝐺𝑒 ≔ Gal(𝐾/𝐻) by conjugation, 𝜎 ⋅ 𝑔 ≔ 𝜎𝑔𝜎−1, which is
well-defined precisely because 𝐺𝑒 is abelian. The extension 𝐾/𝐹  is central if and only if the action
is trivial. Let Δ be a set of representatives of 𝐻×/(𝐻×)𝑒, and note that this admits a natural action
of 𝐺. The Kummer pairing ([Gra03, §I.6]) gives a 𝐺-equivariant isomorphism 𝐺𝑒 ≅ Hom(Δ, 𝜇𝑒(𝐾)).
The action of 𝐺𝑒 on the right-hand side is given by (𝜎 ⋅ 𝜙)(𝛼) = 𝜙(𝜎−1(𝛼))𝜒cyc(𝜎), where 𝜒cyc(𝜎) is
defined by 𝜎 ⋅ 𝜁𝑒 = 𝜁𝜒cyc(𝜎)

𝑒 . The action of 𝐺 on 𝐺𝑒 is trivial if and only if the action on Hom(Δ, 𝜇𝑒)
is trivial. Each element of this group is given by 𝜓𝑔 : 𝛿 ↦ ⟨𝛿, 𝑔⟩ ≔ 𝑔 𝑒√𝛿

𝑒√𝛿
 for some 𝑔 ∈ 𝐺𝑒, and so Γ is

central if and only if (𝜎 ⋅ 𝜓𝑔)(𝛿) = 𝜓𝑔(𝛿) for all 𝛿 ∈ Δ, 𝑔 ∈ 𝐺𝑒 and 𝜎 ∈ 𝐺. Equivalently,

(
𝑔 𝑒√𝜎−1(𝛿)

𝑒√𝜎−1(𝛿)
)

𝜒cyc(𝜎)

= 𝑔 𝑒
√

𝛿
𝑒
√

𝛿
hence 𝑔( 𝑒√𝛼𝜒cyc(𝜎)

𝜎(𝛼)
) = 𝑒√𝛼𝜒cyc(𝜎)

𝜎(𝛼)
, (4.1.20)

where 𝛼 ≔ 𝜎−1(𝛿). This being true for all 𝑔 is equivalent to 𝛼𝜒cyc(𝜎)

𝜎(𝛼)  being an 𝑒-th power for all 𝜎.
Finally, note that 𝐺 acts transitively on Δ, so it suffices to check the criterion for a single 𝛼. □

This test can be implemented quite easily, and is mainly bottlenecked by the computation of
Gal(𝐻/𝐹), at least when [𝐻 : 𝐹 ] is reasonably large.
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Remark 4.10 :  A test for whether an extension is abelian is found in [Coh12, Algorithm 4.4.6]. In
short, the Takagi existence theorem gives a bijection between abelian extensions 𝐾/𝐹  and certain
Takagi subgroups of a ray class group Cl𝔪 𝐹 , where 𝔪 is a sufficiently large modulus. However, this is
very slow when 𝑒 and ℎ+ are large, because it requires computing the ray class group of 𝐹  of modulus
equal to the relative discriminant of 𝐻( 𝑒

√
𝛼)/𝐹 , which is relatively large.

4.2 Detecting Stark–Heegner points
Our method of finding Stark–Heegner points is much more primitive, because we don’t have an
equivalent of the Brumer–Stark conjecture.

Let 𝐸/ℚ be an elliptic curve with split multiplicative reduction at 𝑝. Recall from Theorem 3.2 that
if 𝐸 has associated eigenform 𝑓 ∈ 𝑀2(Γ0(𝑝)), then the corresponding spectral coefficient 𝜆𝑓 =
−𝐿alg(1, 𝑓) log𝐸(𝑃𝜓,𝑓) involves a point 𝑃𝜓,𝑓  conjecturally defined over 𝐻 . To find this, we make use
of the Tate curve 𝐸𝑞 isomorphic to 𝐸, which is described explicitly with the formulae in [Sil09, § C.14].
From this we can find an explicit isomorphism 𝐹×

𝑝 /𝑞ℤ →
𝜙

𝐸𝑞(𝐹𝑝), where 𝑞 is an element satisfying
|𝑞| < 1 generating a discrete subgroup. An approximation to 𝛼 ≔ exp𝑝(−𝜆𝑓/𝐿alg(1, 𝑓)) can then be
mapped to a point on the Tate curve 𝐸𝑞(𝐹𝑝). Mapping further into 𝐸(𝐹𝑝), we may compute using
descent a generating set {𝑔} for 𝐸(𝐻) and attempt to write the image of 𝛼 as an integral combination
of them. Since 𝑃𝜓,𝑓  is only defined up to torsion, it is reasonable to look for a dependence between the
formal logarithms of 𝛼 and the generators {𝑔}. To ensure convergence of the corresponding power
series, we replace 𝛼 by 𝛼𝑝−1 and each 𝑔 by (𝑝 − 1)𝑔. Then we look for an integer relation by applying
the LLL-algorithm to a suitable lattice as in the previous section. Following the convention in pari/
gp, we call this step lindep.

In summary, we have Algorithm 6.

Algorithm 6: Find Stark–Heegner point 𝑃𝜓,𝑓  from 𝜆𝑓

Input: A normalised eigenform 𝑓 ∈ 𝑀2(Γ0(𝑝)) with coefficients in ℚ and associated elliptic curve
𝐸, and 𝜆𝑓 ∈ (ℤ/𝑝𝑚ℤ)2 an approximation to −𝐿alg(1, 𝑓) log𝐸𝑓

𝑃𝜓,𝑓 ∈ 𝐹𝑝

Output: The point 𝑃𝜓,𝑓  on 𝐸
1 𝐸𝑞 ← 𝚃𝚊𝚝𝚎𝙲𝚞𝚛𝚟𝚎(𝐸) // Using formulae in [Sil09, §C.14]
2 𝜙 ← 𝙸𝚜𝚘𝚖𝚘𝚛𝚙𝚑𝚒𝚜𝚖 (𝐹×

𝑝 /𝑞ℤ, 𝐸𝑞) // As in [Sil09, Thm. 14.1]
3 𝛽 ← 𝜙(−𝜆𝑓/𝐿alg(1, 𝑓))
4 𝐻 ← 𝙽𝚊𝚛𝚛𝚘𝚠𝙷𝚒𝚕𝚋𝚎𝚛𝚝𝙲𝚕𝚊𝚜𝚜𝙵𝚒𝚎𝚕𝚍(𝐹)
5 𝐸(𝐻) ← 𝙼𝚘𝚛𝚍𝚎𝚕𝚕𝚆𝚎𝚒𝚕𝙶𝚛𝚘𝚞𝚙 (𝐸/𝐻)
6 𝐿 ← [log𝐸𝑞

((𝑝 − 1)𝛽)]
7 (𝑛1, (𝑛𝑔)) ← 𝚕𝚒𝚗𝚍𝚎𝚙 (𝐿)   // Find integer relation between formal logarithms using LLL 
8 ∑𝑔 𝑛𝑔 ⋅ 𝑔/𝑛1 ∈ 𝐸(𝐻)

By linearity, the algorithm works equally well when 𝜆𝑓  comes from 𝜕𝑓+
𝑄, in which case the corre-

sponding Stark–Heegner point is a weighted sum of points 𝑃𝜓,𝑓 . The algebraic part of the 𝐿-value
can be computed either directly in magma using the intrinsic LRatio, or by using the BSD formula
and the invariants of 𝐸 since 𝐿(𝑠, 𝑓) = 𝐿(𝑠, 𝐸), or even analytically by approximating 𝐿(1, 𝐸) and
computing the periods of 𝐸.
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One limitation of Algorithm 6 is that computing 𝐸(𝐻) is very slow when [𝐻 : ℚ] > 4. We hope to
resolve this in the future by improving the algorithms for detecting polynomials from 𝑝-adic approx-
imations to their roots.

In the table below we list the minimal polynomials of the 𝑋 and 𝑌  coordinates of the Stark–
Heegner points coming from 𝜕𝑓+

𝜓  on the curve 𝐸 : 𝑦2 + 𝑥𝑦 + 𝑦 = 𝑥3 − 𝑥2 − 𝑥 − 14. This is a model
for 𝑋0(17), for which we have 𝐿alg(1, 𝑓) = 1/4, so 𝜆𝑓 = −1

4 log𝐸(𝑃𝜓,𝑓). Here 𝜓 denotes the genus
character associated with ℚ(

√
𝐷): since all the fields ℚ(

√
𝐷) for 𝐷 < 100 with no fundamental

unit of negative norm such that (𝐷
17) = −1 have narrow class number 2, there is a unique nontrivial

character. This satisfies 𝜕𝑓+
𝜓 = −𝜕𝑓+

𝑄, where 𝑄 is a quadratic form with class corresponding to the
inverse different in Cl+. Note that this matches the table on p. 545 of [DPV21].

𝐷 𝑋 𝑌
12 𝑥2 − 6𝑥 + 10 𝑥2 − 2𝑥 + 10
24 𝑥2 + 2

9𝑥 + 89
9 𝑥2 + 230

27 𝑥 + 25
28 𝑥2 − 6𝑥 + 10 𝑥2 + 10𝑥 + 41
44 𝑥2 − 14𝑥 + 338 𝑥2 − 26𝑥 + 7394
56 𝑥2 + 2

9𝑥 + 89
9 𝑥2 + 230

27 𝑥 + 25
57 𝑥2 + 2306

1225𝑥 + 6521
1225 𝑥2 + 111042

42875 𝑥 + 15319
8575

88 𝑥2 + 2
9𝑥 + 89

9 𝑥2 − 182
27 𝑥 + 401

9

92 𝑥2 − 6𝑥 + 10 𝑥2 − 2𝑥 + 10

Table 2: Table of Stark–Heegner points on 𝐸 : 𝑦2 + 𝑥𝑦 + 𝑦 = 𝑥3 − 𝑥2 − 𝑥 − 14, for 𝐷 < 100.

4.3 Statistics of Brumer–Stark units
Below we show some tables of minimal polynomials of Brumer–Stark units in different ranges. Full
tables are in the author’s github repository, https://github.com/havarddj/drd.

𝐷 𝑃𝐷 𝐷 𝑃𝐷 𝐷 𝑃𝐷

44 3𝑥2 + 5𝑥 + 3 152 3𝑥2 + 2𝑥 + 3 236 27𝑥2 + 5𝑥 + 27
56 3𝑥2 + 2𝑥 + 3 161 27𝑥2 + 38𝑥 + 27 248 27𝑥2 − 46𝑥 + 27
77 3𝑥2 + 5𝑥 + 3 188 243𝑥2 − 298𝑥 + 243 284 2187𝑥2 − 4090𝑥 +

2187
92 27𝑥2 + 38𝑥 + 27 209 3𝑥2 + 5𝑥 + 3 305 9𝑥4 + 5𝑥3 + 17𝑥2 +

5𝑥 + 9
140 81𝑥4 + 6𝑥3 −

149𝑥2 + 6𝑥 + 81
221 9𝑥4 − 2𝑥3 − 5𝑥2 −

2𝑥 + 9
329 243𝑥2 − 298𝑥 + 243

Table 3: Minimal polynomials of Brumer–Stark units for 𝑝 = 3, 𝐷 < 330.
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𝐷 𝑃𝐷

2005 212𝑥8 + 24 ⋅ 1055𝑥7 + 22 ⋅ 9419𝑥6 + 57995𝑥5 + 66831𝑥4 + 57995𝑥3 + 22 ⋅
9419𝑥2 + 24 ⋅ 1055𝑥 + 212

2013 230𝑥4 − 23 ⋅ 57677665𝑥3 − 1118365527𝑥2 − 23 ⋅ 57677665𝑥 + 230

2021 29𝑥6 + 22 ⋅ 111𝑥5 + 21 ⋅ 123𝑥4 − 101𝑥3 + 21 ⋅ 123𝑥2 + 22 ⋅ 111𝑥 + 29

2037 218𝑥4 + 23 ⋅ 16215𝑥3 − 263887𝑥2 + 23 ⋅ 16215𝑥 + 218

2045 26𝑥4 − 9𝑥3 − 65𝑥2 − 9𝑥 + 26

2077 23𝑥2 + 15𝑥 + 23

2085 224𝑥4 − 23 ⋅ 6289393𝑥3 + 70333881𝑥2 − 23 ⋅ 6289393𝑥 + 224

2093 28𝑥4 − 21 ⋅ 217𝑥3 + 645𝑥2 − 21 ⋅ 217𝑥 + 28

2101 213𝑥6 + 26 ⋅ 79𝑥5 − 23 ⋅ 1009𝑥4 − 10161𝑥3 − 23 ⋅ 1009𝑥2 + 26 ⋅ 79𝑥 + 213

Table 4: Minimal polynomials of Brumer–Stark units for 𝑝 = 2, 2000 ≤ 𝐷 ≤ 2101.

Given the data computed, it is natural to study the “horizontal properties” of Brumer–Stark units,
meaning the behaviour of the 𝑝-units 𝜀 in ℚ as 𝐷 varies.

The coefficients of the polynomials are all of roughly the same magnitude, despite the strong conditions
on the 𝑝-valuation of the constant terms. In particular, the logarithmic height of the middle coefficient
is roughly ord𝑝 𝑎0, which is easily computed in terms of partial 𝜁-values using Equation (4.1.9). A
classical result of Schur says that the coefficients of cyclotomic polynomials can be arbitrarily large. It
would be interesting to know whether the same holds for our polynomials, normalised to be monic. The
largest value we find is 822.637, across the tables for 𝑝 ∈ {2, 3, 5, 7, 11}. Figure 3 shows the absolute
value of the middle coefficient of the normalised polynomials against the discriminant for different 𝑝.

Figure 3:  Normalised middle coefficients for various primes 𝑝.

If we plot the roots of the minimal polynomials on the unit circle as 𝐷 varies, it is natural to ask how
the Brumer–Stark units distribute. It is well-known that the set of Galois orbits of primitive 𝑁 -th roots
of unity becomes equidistributed with respect to the Haar measure as 𝑁  tends to infinity. One might
expect a similar thing to hold for a sequence of Brumer–Stark units, as the size of the corresponding
orbits tends to infinity. A weaker statement is that the Brumer–Stark units, for 𝑝 fixed, become dense
in the unit circle as 𝐷 → ∞. In statistical experiements, the distribution of our data appears very
close to a uniform distribution, both visually and by applying tools like the Kolmogorov–Smirnov and
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Kuiper tests. We expect that a type of equidistribution result may be inferred from standard circular
equidistribution results, for which the current missing ingredient is an asymptotic bound for values
of the Rademacher symbol Ψ.

65



Chapter III: Appendices

Appendix A: A proof of Meyer’s theorem

In this section we give a self-contained proof of Meyer’s theorem, Theorem 4.3. The proof is not new,
but modifies the exposition of [Sie80] using ideas of [Zag75] and [DIT18].

The strategy of the proof is to evaluate the “period” ∫𝛾𝑧0

𝑧0
𝐸2(𝑧)𝑑𝑧 in two different ways. Recall from

Section 4.1 that we chose 𝛾 = (𝑎
𝑐

𝑏
𝑑) satisfying

𝜀𝐹 𝑤 = 𝑎𝑤 + 𝑏 and 𝜀𝐹 = 𝑐𝑤 + 𝑑, (1.1)

where {1, 𝑤} is a ℤ-basis for the lattice 𝔟 with class [𝔟] = 𝐴−1 such that 𝑤 > 0, and 𝜀𝐹  is the totally
positive fundamental unit of 𝑓 . The first manipulation is to apply Stokes’ theorem to 𝐸2(𝑧)𝑑𝑧 ∼
𝑑 log 𝜂(𝑧) and the transformation law for log 𝜂. On the other hand, we can also perform a change of
variables to map the contour onto a segment in ℝ>0, then decompose this interval as a union of the
intervals (𝜀2𝑛

𝐹 , 𝜀2𝑛−2
𝐹 ) for 𝑛 ∈ ℤ. After interchanging summation and integration, some straighforward

calculations give the special value.

A technical point here is that 𝜁−(0, 𝐴) is defined via its functional equation, so to avoid handling diver-
gent sums we need to replace 𝐸2 with the real-analytic Eisenstein series 𝐸(𝑧, 𝑠). The corresponding
identity is called Hecke’s integral formula. This also complicates the first step, which requires a version
of Kronecker’s first limit formula.

Recall the definition of the weight 0 real analytic Eisenstein series,

𝐸(𝑧, 𝑠) ≔ ∑
Γ∞\Γ(1)

ℑ(𝛾𝑧)𝑠 = 1
2𝜁(2𝑠)

∑
′

𝑛,𝑚∈ℤ

𝑦𝑠

|𝑚 + 𝑛𝑧|2𝑠 , ℜ(𝑠) > 1. (1.2)

As before, the symbol ∑′ means we omit the indices for which the summand is undefined, in this case
(𝑚, 𝑛) = (0, 0). We also define the “completion” of 𝐸(𝑧, 𝑠),

𝐸*(𝑧, 𝑠) ≔ 𝜋−𝑠Γ(𝑠)𝜁(2𝑠)𝐸(𝑧, 𝑠), (1.3)

which satisfies the functional equation 𝐸*(𝑧, 1 − 𝑠) = 𝐸*(𝑧, 𝑠). This gives a meromorphic continuta-
tion in the 𝑠-variable to all of ℂ with poles at 𝑠 = 0 and 𝑠 = 1. Finally, the partial 𝜁-function 𝜁−(𝑠, 𝐴) ≔
1
2(𝜁(𝑠, 𝐴) − 𝜁(𝑠, 𝐴[𝔡])), may also be completed with archimedean Euler factors, by Λ−(𝑠, 𝐴) ≔
𝐷𝑠/2𝜋−𝑠Γ(𝑠+1

2 )2𝜁−(𝑠, 𝐴).

If we fix a non-zero ideal 𝔟 ≤ 𝒪𝐾  with [𝔟] = 𝐴−1, then the map 𝔞 ↦ 𝔞𝔟 = (𝛽) sets up a bijection
between integral ideals with class 𝐴 and principal ideals in 𝔟 generated by a totally positive element.
Then we compute
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𝐿(𝑠, 𝐴) Nm (𝔟)−𝑠 = ∑
𝔞≤𝒪𝐾, [𝔞]=𝐴

1
Nm (𝔞𝔟)𝑠

= ∑
(𝛽)≤𝔟, 𝛽≫0

1
|Nm(𝛽)|𝑠

= ∑
𝛽∈𝔟/±𝜀𝐹 , 𝛽≫0

1
|Nm(𝛽)|𝑠

= ∑
𝛽∈𝔟/𝜀𝐹 ,
Nm(𝛽)>0

1
|Nm(𝛽)|𝑠

.

(1.4)

A natural representative for (𝐴*)−1 is (
√

𝐷)𝔟, and proceeding as before we find

𝐿(𝑠, 𝐴*) = Nm (
√

𝐷)
𝑠
Nm (𝔟)𝑠′ ∑

𝛼∈(
√

𝐷)𝔟/±𝜀𝐹 ,
𝛼≫0

1
|Nm(𝛼)|𝑠

= Nm (
√

𝐷)
𝑠
Nm (𝔟)𝑠 ∑

𝛽∈𝔟/±𝜀𝐹 ,
𝛽>0>𝛽′

1
|Nm(

√
𝐷𝛽)|

𝑠

= Nm (𝔟)𝑠 ∑
𝛽∈𝔟/𝜀𝐹 ,
Nm(𝛽)<0

1
|Nm(𝛽)|𝑠

.

(1.5)

It follows that

𝜁−(𝑠, 𝐴) = 1
2
Nm(𝔟)𝑠 ∑

𝛽∈𝔟/𝜀𝐹

sgn Nm(𝛽)
|Nm(𝛽)|𝑠

. (1.6)

Given an odd character 𝜒 : Cl+𝐾 → ℂ× we have the relations

𝐿(𝑠, 𝜒) = ∑
𝐴∈ Cl+𝐾

𝜒(𝐴)𝜁−(𝑠, 𝐴) (1.7)

and

𝜁−(𝑠, 𝐴) = 1
2

∑
𝜒

(𝜒(𝐴) − 𝜒(𝐴*))𝐿(𝑠, 𝜒) = ∑
𝜒 odd

𝜒(𝐴)𝐿(𝑠, 𝜒), (1.8)

as for even characters 𝜒(𝐴) − 𝜒(𝐴*) = 0.

Step 1

The proof of Meyer’s formula hinges on the following:

Lemma 1.1 (Hecke’s integral formula) : We have

Λ−(𝑠, 𝐴) = 𝑖 ∫
𝛾𝑧0

𝑧0

d
d𝑧

𝐸(𝑧, 𝑠) d𝑧. (1.9)

We prove this in a manner similar to [Sie80, §2.45], but with different notation and a different choice
of parametrisation of the geodesic.

Proof (of Lemma 1.1) :

It is a straightforward, albeit somewhat tedious, exercise to check that
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d
d𝑧

𝐸(𝑧, 𝑠) = Γ(𝑠)𝜋−𝑠 𝑠
2𝑖

∑
𝑚,𝑛

𝑦𝑠−1

(𝑚 + 𝑛𝑧)2|𝑚 + 𝑛𝑧|2𝑠−2 for ℜ(𝑠) > 1. (1.10)

Note that the function 𝜙(𝑡) = 𝑡2𝑖𝑤+𝑤′
𝑡2𝑖+1  maps the interval (0, ∞) onto the geodesic in the upper-half

plane connecting 𝑤 and 𝑤′. Let 𝑡0 = 𝜙−1(𝑧0), and note that 𝜙(𝜀𝐹 𝑡) = 𝛾𝜙(𝑡), so 𝜙−1(𝛾𝑧0) = 𝜀𝐹 𝑡0. We
will use this to evaluate the integral

∫
𝛾𝑧0

𝑧0

𝑦𝑠−1 d𝑧
(𝑚 + 𝑛𝑧)2|𝑚 + 𝑛𝑧|2𝑠−2 , (1.11)

when 𝑚𝑛 ≠ 0. One easily computes that

𝜙′(𝑡) = 2𝑡𝑖 𝑤 − 𝑤′
(𝑡2𝑖 + 1)2 and ℑ𝜙(𝑡) = 𝑡2(𝑤 − 𝑤′)

|𝑡2𝑖 + 1|2
. (1.12)

Let 𝛽 = 𝑚 + 𝑛𝑤, and note that as (𝑚, 𝑛) ranges through all pairs of integers, 𝛽 runs through the
elements of 𝔟. Then 𝑚 + 𝑛𝑧 = 𝑡2𝑖𝛽+𝛽′

𝑡2𝑖+1 , and so

(1.11) = 2𝑖(𝑤 − 𝑤′)𝑠 ∫
𝜀𝐹 𝑡0

𝑡0

𝑡2𝑠

(𝑡2𝑖𝛽 + 𝛽′)2|𝑡2𝑖𝛽 + 𝛽′|2𝑠−2
𝑑𝑡
𝑡

= 2𝑖(𝑤 − 𝑤′)𝑠 ∫
𝜀𝐹 𝑡0

𝑡0

𝑡2𝑠

(𝑡2𝑖𝛽 + 𝛽′)2(𝑡4𝑖𝛽2 + (𝛽′)2)𝑠−1
𝑑𝑡
𝑡

.
(1.13)

Summing over 𝑚, 𝑛, or equivalently 𝛽 ∈ 𝔟, we find

∫
𝛾𝑧0

𝑧0

d
d𝑧

𝐸(𝑧, 𝑠)𝑑𝑧 = Γ(𝑠)𝜋−𝑠𝑠(𝑤 − 𝑤′)𝑠 ∑
𝛽∈𝔟

∫
𝜀𝐹 𝑡0

𝑡0

𝑡2𝑠

(𝑡2𝑖𝛽 + 𝛽′)2(𝑡4𝑖𝛽2 + (𝛽′)2)𝑠−1
d𝑡
𝑡

(1.14)

Next we consider the integral

𝑐(𝑠) ≔ ∫
∞

0

𝑞𝑠

(𝑞𝑖 + 1)2(𝑞2 + 1)𝑠−1
𝑑𝑞
𝑞

, (1.15)

Integration by parts along with properties of the Beta-function, or alternatively an argument based
on the poles and zeroes of 𝑐, show that 𝑐(𝑠) = −𝑖Γ(𝑠+1

2 )2/Γ(𝑠 + 1). For any 𝑎, 𝑏 ∈ ℝ×, rescaling by
|𝑎|/|𝑏| gives

𝑐(𝑠)
|𝑎𝑏|𝑠

= ∫
∞

0

𝑞𝑠

(|𝑎|𝑞𝑖 + |𝑏|)2(𝑎2𝑞2 + 𝑏2)𝑠−1
𝑑𝑞
𝑞

. (1.16)

On the other hand, rescaling 𝑞 by 𝜎 ∈ {±1} gives

𝜎𝑐(𝑠) = ∫
∞

0

𝑞𝑠

(𝑞𝑖 + 𝜎)2(𝑞2 + 1)𝑠−1
𝑑𝑞
𝑞

. (1.17)

We put 𝑎 = 𝛽, 𝑏 = 𝛽′ and 𝜎 = 𝜎(𝛽) ≔ sgn(Nm(𝛽)). Then (|𝛽|𝑞𝑖 + |𝛽′|)2 = (𝛽𝑞𝑖 + 𝜎(𝛽)𝛽′)2, and we
obtain

𝑐(𝑠) ∑
𝛽∈𝔟/𝜀𝐹

𝜎(𝛽)
|Nm(𝛽)|𝑠

= ∑
𝛽∈𝔟/𝜀𝐹

∫
∞

0

𝑞𝑠

(𝛽𝑞𝑖 + 𝛽′)2(𝛽2𝑞2 + (𝛽′)2)𝑠−1
𝑑𝑞
𝑞

, (1.18)

We can decompose the domain of integration (0, ∞) as ⋃𝑛∈ℤ(𝑡20𝜀𝑛
𝐹 , 𝑡20𝜀𝑛+2

𝐹 ), and the change of
variables 𝑞 ↦ 𝜀2

𝐹 𝑞 corresponds to replacing 𝛽 with 𝜀𝐹 𝛽. Therefore we can rewrite Equation (1.18) as

68



(1.18) = ∑
𝛽∈𝔟

∫
𝑡2
0𝜀2

𝐹

𝑡2
0

𝑞𝑠

(𝛽𝑞𝑖 + 𝛽′)2(𝛽2𝑞2 + (𝛽′)2)𝑠−1
𝑑𝑞
𝑞

(1.19)

Setting 𝑞 = 𝑡2 and combining with Equation (1.14) gives

∫
𝛾𝑧0

𝑧0

d
d𝑧

𝐸(𝑧, 𝑠)𝑑𝑧 = Γ(𝑠)𝑠(𝑤 − 𝑤′)𝑠

𝜋𝑠 ∑
𝛽∈𝔟

∫
𝜀𝐹 𝑡0

𝑡0

𝑡2𝑠

(𝑡2𝑖𝛽 + 𝛽′)2(𝑡4𝑖𝛽2 + (𝛽′)2)𝑠−1
𝑑𝑡
𝑡

= Γ(𝑠)𝑠(𝑤 − 𝑤′)𝑠

𝜋𝑠
𝑐(𝑠)
2

∑
𝛽∈𝔟/𝜀𝐹

𝜎(𝛽)
|Nm(𝛽)|𝑠

= −𝑖𝜋−𝑠Γ(𝑠 + 1
2

)
2
(
√

𝐷)
𝑠
𝜁−(𝑠, 𝐴) = −𝑖Λ−(𝑠, 𝐴),

(1.20)

since (𝑤 − 𝑤′) = Nm(𝔟)
√

𝐷. Here we use the formula for Γ in [Art64, p. 24]: Γ((𝑠 + 1)/2)2 = 𝑠/2 ⋅
Γ(𝑠/2)Γ((𝑠 + 1)/2) = 𝑠/2 ⋅ Γ(𝑠) ⋅

√
𝜋/2𝑠−1. This finishes the proof of Hecke’s formula. □

Step 2

Next we compute lim𝑠→0 ∫𝛾𝑧0

𝑧0

𝜕
𝜕𝑧𝐸(𝑧, 𝑠) d𝑧. By the usual argument we can pass the limit inside the

integral and derivative, and apply the following identity:

Lemma 1.2 : We have

lim
𝑠→0

𝜕
𝜕𝑧

𝐸*(𝑧, 𝑠) = − 𝜕
𝜕𝑧

log 𝜂(𝑧) + 𝑖
4𝑦

. (1.21)

Proof :  Since 𝐸∗ is invariant under 𝑧 ↦ 𝑧 + 1, it has a Fourier expansion, which according to [Kub73,
§2.2] is given by

𝐸*(𝑧, 𝑠) = Λ(2𝑠)𝑦𝑠 + Λ(2 − 2𝑠)𝑦1−𝑠

+4𝑦1/2 ∑
∞

𝑛=1
𝑛1/2−𝑠𝜎2𝑠−1(𝑛)𝐾𝑠−1/2(2𝜋𝑛𝑦) cos(2𝜋𝑛𝑥),

(1.22)

where Λ(𝑠) = 𝜋−𝑠/2Γ(𝑠/2)𝜁(𝑠) is the completion of the Riemann zeta function, 𝜎2𝑠−1(𝑛) ≔
∑𝑑∣𝑛 𝑑2𝑠−1 is the usual divisor sum, and 𝐾𝑠−1/2 is the modified Bessel function of the second kind. By
absolute convergence for 𝑠 sufficiently large, we can differentiate inside the summation sign, to which
end we compute

𝜕
𝜕𝑥

(𝑦1/2𝐾𝑠−1/2(2𝜋𝑛𝑦) cos(2𝜋𝑛𝑥)) = −2𝜋𝑛𝑦1/2𝐾𝑠−1/2(2𝜋𝑛𝑦) sin(2𝜋𝑛𝑥) (1.23)

and

𝜕
𝜕𝑦

(𝑦1/2𝐾𝑠−1/2(2𝜋𝑛𝑦) cos(2𝜋𝑛𝑥)) = cos(2𝜋𝑛𝑥)( 1
2𝑦1/2 𝐾𝑠−1/2(2𝜋𝑛𝑦)

−𝑦1/22𝜋𝑛 ( 𝐾−𝑠−1/2(2𝜋𝑛𝑦) + 𝑠 − 1/2
2𝜋𝑛𝑦

𝐾𝑠−1/2(2𝜋𝑛𝑦) )),
(1.24)

since 𝐾𝜈(𝑦) = 𝐾−𝜈(𝑦), so that 𝜕
𝜕𝑦𝐾𝜈(𝑦) = −𝐾𝜈−1(𝑦) − 𝜈

𝑦𝐾𝜈(𝑦) and setting 𝜈 = 1/2 − 𝑠. Note that
when we set 𝑠 = 0 in the expression above, the first and third summand cancel. Therefore, applying

d
d𝑧

= 1
2
( 𝜕

𝜕𝑥
− 𝑖 𝜕

𝜕𝑦
) (1.25)
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and letting 𝑠 tend to 0 gives

lim
𝑠→0

𝜕
𝜕𝑧

(𝑦1/2𝐾𝑠−1/2(2𝜋𝑛𝑦) cos(2𝜋𝑛𝑥)) = 𝑖𝑦1/2

2
𝐾1/2(2𝜋𝑛𝑦)2𝜋𝑛𝑒2𝜋𝑖𝑛𝑥

= 𝑖𝑦1/2

2
√ 1

4𝑛𝑦
2𝜋𝑛𝑒2𝜋𝑛(𝑖𝑥−𝑦)

= 𝑖
4
√

𝑛
2𝜋𝑛𝑞𝑛,

(1.26)

where in the second equality we use the identity 𝐾1/2(𝑦) = √ 𝜋
2𝑦𝑒−𝑦. Next, the contribution from

the constant term is −𝑖
2 (Λ(2𝑠)𝑠𝑦𝑠−1 + Λ(2 − 2𝑠)(1 − 𝑠)𝑦−𝑠). The function 𝑠 ↦ Λ(2𝑠) has a simple

pole at 𝑠 = 0 with residue −1/2, and taking the limit we therefore get 𝑖
4𝑦 − 𝑖Λ(2)

2 . Because 𝑛𝜎−1(𝑛) =
𝜎1(𝑛) and Λ(2) = 𝜋

6 , we find

lim
𝑠→0

d
d𝑧

𝐸*(𝑧, 𝑠) = 𝑖
4𝑦

− 𝜋𝑖
12

+ 2𝜋𝑖 ∑
∞

𝑛=1
𝜎1(𝑛)𝑞𝑛. (1.27)

On the other hand, it is an easy exercise (see for example [DS06, Prop. 1.2.5]) to show that d
d𝑧 log 𝜂(𝑧) =

𝜋𝑖
12 − 2𝜋𝑖 ∑∞

𝑛=1 𝜎1(𝑛)𝑞𝑛, which proves our claim. □

Step 3

Note first that the path of integration is a subset of the semicircle

𝑧 − 𝑤
𝑧 − 𝑤′

+ 𝑧 − 𝑤
𝑧 − 𝑤′

= 0 where 𝑧 ∈ 𝔥, (1.28)

so for 𝑝 ≔ −(𝑤 + 𝑤′)/2 and 𝑞 ≔ 𝑤𝑤′ we have 𝑧𝑧 + 𝑝(𝑧 + 𝑧) + 𝑞 = 0. Thus

−2 ⋅ 𝑖
4𝑦

= 1
2𝑖𝑦

= 1
𝑧 − 𝑧

= 𝑧 + 𝑝
𝑧2 + 2𝑝𝑧 + 𝑞

= d
d𝑧

√log(𝑧 − 𝑤)(𝑧 − 𝑤′). (1.29)

We now combine Lemma 1.1 with Lemma 1.2, and use the functional equation of 𝜂,

log 𝜂((𝑎
𝑐

𝑏
𝑑)𝑧) − log 𝜂(𝑧) = 𝜋𝑖

12
Φ(𝑎

𝑐
𝑏
𝑑) + 1

2
log(−𝑖 sgn(𝑐)(𝑐𝑧 + 𝑑)), (1.30)

proved in [RG72, §4A], to obtain

Λ−(0, 𝐴) = 𝜋𝜁−(0, 𝐴) = 𝑖 ∫
𝛾𝐴𝑧

𝑧
− d

d𝑧
log 𝜂(𝑧) + 𝑖

4𝑦
𝑑𝑧

= 𝑖 ∫
𝛾𝐴𝑧

𝑧
− d

d𝑧
log 𝜂(𝑧) − 1

2
d
d𝑧

log √(𝑧 − 𝑤)(𝑧 − 𝑤′)𝑑𝑧

= 𝜋
12

Φ(𝛾𝐴) − 𝑖
2

log(−𝑖 sgn(𝑐)(𝑐𝑧 + 𝑑)) − 𝑖
2

log √(𝛾𝐴𝑧 − 𝑤)(𝛾𝐴𝑧 − 𝑤′)
(𝑧 − 𝑤)(𝑧 − 𝑤′)

.

(1.31)

By noting that

𝛾𝐴𝑧 − 𝑤 = 𝑧 − 𝑤
𝜀𝐹 (𝑐𝑧 + 𝑑)

and 𝛾𝐴𝑧 − 𝑤′ = 𝑧 − 𝑤′
𝜀′

𝐹 (𝑐𝑧 + 𝑑)
(1.32)

we get that

70



𝜁−(0, 𝐴) = 1
12

Φ(𝛾𝐴) + 1
2𝜋𝑖

log(−𝑖 sgn(𝑐)(𝑐𝑧 + 𝑑)) + 1
2𝜋𝑖

log √ 1
(𝑐𝑧 + 𝑑)2 . (1.33)

One then verifies that the correct choice of square root is given by sgn(𝑎 + 𝑑)(𝑐𝑧 + 𝑑)−1, and so

1
2𝜋𝑖

log(−𝑖 sgn(𝑐(𝑎 + 𝑑))) = −1
4

sgn(𝑐(𝑎 + 𝑑)) = 1
12

⋅ (−3 sgn 𝑐(𝑎 + 𝑑)), (1.34)

and this concludes the proof of Meyer’s theorem.

Remark 1.3 :  It would be interesting to have a “topological” proof of Meyer’s theorem along the lines
of [BCG20, Theorem 25].
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Appendix B: Tables of Gross–Stark units

Table 5: A selection of minimal polynomials of Gross–Stark
units for 𝑝 = 2

𝐷 𝑃𝐷

21 4𝑥2 − 𝑥 + 4

69 8𝑥2 + 7𝑥 + 8

77 2𝑥2 + 3𝑥 + 2

93 8𝑥2 + 15𝑥 + 8

133 2𝑥2 + 3𝑥 + 2

141 32𝑥2 − 17𝑥 + 32

165 64𝑥4 − 66𝑥3 + 29𝑥2 − 66𝑥 + 64

205 4𝑥4 − 5𝑥3 + 7𝑥2 − 5𝑥 + 4

213 128𝑥2 − 185𝑥 + 128

221 4𝑥4 + 3𝑥3 − 𝑥2 + 3𝑥 + 4

237 32𝑥2 + 15𝑥 + 32

253 8𝑥2 + 7𝑥 + 8

285 256𝑥4 + 286𝑥3 + 141𝑥2 + 286𝑥 + 256

301 2𝑥2 + 3𝑥 + 2

309 32𝑥2 + 39𝑥 + 32

341 8𝑥2 + 15𝑥 + 8

357 1024𝑥4 + 1980𝑥3 + 2273𝑥2 + 1980𝑥 + 1024

381 32𝑥2 + 63𝑥 + 32

413 8𝑥2 − 9𝑥 + 8

429 4096𝑥4 + 12190𝑥3 + 16269𝑥2 + 12190𝑥 + 4096

437 8𝑥2 + 7𝑥 + 8

453 128𝑥2 − 105𝑥 + 128

469 32𝑥6 − 20𝑥5 − 18𝑥4 + 19𝑥3 − 18𝑥2 − 20𝑥 + 32

⋮ ⋮

1005 262144𝑥4 + 296384𝑥3 + 148569𝑥2 +
296384𝑥 + 262144

1045 256𝑥8 − 776𝑥7 + 1472𝑥6 − 2080𝑥5 + 2281𝑥4 −
2080𝑥3 + 1472𝑥2 − 776𝑥 + 256

1077 524288𝑥2 + 864535𝑥 + 524288

1085 64𝑥4 + 30𝑥3 + 101𝑥2 + 30𝑥 + 64

1101 8192𝑥6 + 1980𝑥5 − 4908𝑥4 − 10161𝑥3 −
4908𝑥2 + 1980𝑥 + 8192

1133 32𝑥2 + 39𝑥 + 32

1141 2𝑥2 + 3𝑥 + 2

1149 131072𝑥2 − 243377𝑥 + 131072

1173 262144𝑥4 + 540540𝑥3 + 769313𝑥2 +
540540𝑥 + 262144

⋮ ⋮

3565 4096𝑥4 − 9480𝑥3 + 12449𝑥2 − 9480𝑥 + 4096

𝐷 𝑃𝐷

3597 274877906944𝑥4 + 279166820830𝑥3 +
35058555213𝑥2 +

279166820830𝑥 + 274877906944

3605 1024𝑥4 + 1404𝑥3 + 769𝑥2 + 1404𝑥 + 1024

3621 4398046511104𝑥4 − 2069928284160𝑥3 −
608386200559𝑥2 − 2069928284160𝑥 +

4398046511104

3629 8192𝑥2 − 7025𝑥 + 8192

3661 32𝑥2 − 57𝑥 + 32

3669 34359738368𝑥2 +
47565810487𝑥 + 34359738368

3685 262144𝑥4 + 161664𝑥3 − 199591𝑥2 +
161664𝑥 + 262144

3693 134217728𝑥2 + 130114335𝑥 + 134217728

⋮ ⋮

Table 6: A selection of minimal polynomials of Gross–Stark
units for 𝑝 = 3

𝐷 𝑃𝐷

44 3𝑥2 + 5𝑥 + 3

56 3𝑥2 + 2𝑥 + 3

77 3𝑥2 + 5𝑥 + 3

92 27𝑥2 + 38𝑥 + 27

140 81𝑥4 + 6𝑥3 − 149𝑥2 + 6𝑥 + 81

152 3𝑥2 + 2𝑥 + 3

161 27𝑥2 + 38𝑥 + 27

188 243𝑥2 − 298𝑥 + 243

209 3𝑥2 + 5𝑥 + 3

221 9𝑥4 − 2𝑥3 − 5𝑥2 − 2𝑥 + 9

236 27𝑥2 + 5𝑥 + 27

248 27𝑥2 − 46𝑥 + 27

284 2187𝑥2 − 4090𝑥 + 2187

305 9𝑥4 + 5𝑥3 + 17𝑥2 + 5𝑥 + 9

329 243𝑥2 − 298𝑥 + 243

332 27𝑥2 + 29𝑥 + 27

341 27𝑥2 − 10𝑥 + 27

344 3𝑥2 + 2𝑥 + 3

377 9𝑥4 − 5𝑥3 + 𝑥2 − 5𝑥 + 9

380 6561𝑥4 + 2556𝑥3 + 7366𝑥2 + 2556𝑥 + 6561

413 27𝑥2 + 5𝑥 + 27

428 27𝑥2 + 53𝑥 + 27

437 27𝑥2 + 38𝑥 + 27
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𝐷 𝑃𝐷

440 81𝑥4 − 210𝑥3 + 259𝑥2 − 210𝑥 + 81

473 243𝑥6 + 360𝑥5 − 240𝑥4 − 725𝑥3 − 240𝑥2 +
360𝑥 + 243

476 59049𝑥4 − 60348𝑥3 + 7222𝑥2 − 60348𝑥 +
59049

497 2187𝑥2 − 4090𝑥 + 2187

⋮ ⋮

1001 59049𝑥4 − 34830𝑥3 + 53323𝑥2 − 34830𝑥 +
59049

1004 2187𝑥2 − 3370𝑥 + 2187

1016 19683𝑥6 + 33786𝑥5 − 6099𝑥4 − 40916𝑥3 −
6099𝑥2 + 33786𝑥 + 19683

1052 1594323𝑥2 − 3061354𝑥 + 1594323

1064 729𝑥4 − 660𝑥3 − 74𝑥2 − 660𝑥 + 729

1085 729𝑥4 + 1014𝑥3 + 739𝑥2 + 1014𝑥 + 729

1112 27𝑥2 − 46𝑥 + 27

1121 27𝑥2 + 5𝑥 + 27

1133 243𝑥2 − 475𝑥 + 243

1148 43046721𝑥4 + 74977188𝑥3 + 83503558𝑥2 +
74977188𝑥 + 43046721

1169 177147𝑥2 − 922𝑥 + 177147

1196 531441𝑥4 − 17262𝑥3 + 457603𝑥2 − 17262𝑥 +
531441

⋮ ⋮

3512 14348907𝑥2 + 26595314𝑥 + 14348907

3521 10460353203𝑥2 +
19406873942𝑥 + 10460353203

3548 68630377364883𝑥2 − 41296506721258𝑥 +
68630377364883

3560 43046721𝑥8 − 44891820𝑥7 + 24573418𝑥6 +
64530000𝑥5 − 73694957𝑥4 + 64530000𝑥3 +

24573418𝑥2 − 44891820𝑥 + 43046721

3569 14348907𝑥6 − 3493368𝑥5 − 3900744𝑥4 +
16070093𝑥3 − 3900744𝑥2 − 3493368𝑥 +

14348907

3596 150094635296999121𝑥12 +
274893716979050274𝑥11 +
127587088873030941𝑥10 −
16157073362357466𝑥9 +
15201693671781834𝑥8 −
268849681252954998𝑥7 −
530916879720144923𝑥6 −
268849681252954998𝑥5 +
15201693671781834𝑥4 −
16157073362357466𝑥3 +
127587088873030941𝑥2 +

274893716979050274𝑥 + 150094635296999121

𝐷 𝑃𝐷

3605 59049𝑥4 − 159201𝑥3 + 206704𝑥2 − 159201𝑥 +
59049

3608 729𝑥4 − 966𝑥3 + 1099𝑥2 − 966𝑥 + 729

3629 1594323𝑥2 − 2784490𝑥 + 1594323

3641 27𝑥2 − 10𝑥 + 27

3644 617673396283947𝑥2 + 1102302840524870𝑥 +
617673396283947

3689 205891132094649𝑥4 − 804129173807652𝑥3 +
1196724390302422𝑥2 − 804129173807652𝑥 +

205891132094649

3692 22876792454961𝑥4 + 61605128740302𝑥3 +
79528282968163𝑥2 + 61605128740302𝑥 +

22876792454961

⋮ ⋮

Table 7: A selection of minimal polynomials of Gross–Stark
units for 𝑝 = 7

𝐷 𝑃𝐷

517 16807𝑥2 + 31922𝑥 + 16807

524 16807𝑥2 − 32435𝑥 + 16807

537 16807𝑥2 − 10907𝑥 + 16807

545 49𝑥4 + 101𝑥3 + 105𝑥2 + 101𝑥 + 49

552 1628413597910449𝑥4 +
3628866784725770𝑥3 +

4013798329579011𝑥2 + 3628866784725770𝑥 +
1628413597910449

556 343𝑥2 − 565𝑥 + 343

572 282475249𝑥4 + 24266564𝑥3 − 313639770𝑥2 +
24266564𝑥 + 282475249

573 96889010407𝑥2 +
44342429053𝑥 + 96889010407

584 49𝑥4 + 2𝑥3 − 21𝑥2 + 2𝑥 + 49

633 343𝑥2 + 286𝑥 + 343

636 22539340290692258087863249𝑥4 −
12019590785374630656818620𝑥3 −
2943405286722736658219802𝑥2 −
12019590785374630656818620𝑥 +

22539340290692258087863249

649 343𝑥2 − 155𝑥 + 343

664 343𝑥2 − 61𝑥 + 343

668 1977326743𝑥2 − 3946423058𝑥 + 1977326743

689 5764801𝑥8 + 10393929𝑥7 + 10384031𝑥6 +
8819352𝑥5 + 6609147𝑥4 + 8819352𝑥3 +

10384031𝑥2 + 10393929𝑥 + 5764801

696 1628413597910449𝑥4 −
6046474837894582𝑥3 +

8869060908086667𝑥2 − 6046474837894582𝑥 +
1628413597910449
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𝐷 𝑃𝐷

705 22539340290692258087863249𝑥4 +
7429856301459255172342372𝑥3 −
13236353781307558431105498𝑥2 +
7429856301459255172342372𝑥 +
22539340290692258087863249

712 49𝑥4 − 50𝑥3 + 91𝑥2 − 50𝑥 + 49

713 40353607𝑥2 − 72260210𝑥 + 40353607

717 4747561509943𝑥2 + 529727692357𝑥 +
4747561509943

741 13841287201𝑥4 + 13420002596𝑥3 +
655430406𝑥2 + 13420002596𝑥 + 13841287201

745 49𝑥4 + 61𝑥3 + 25𝑥2 + 61𝑥 + 49

748 5764801𝑥4 − 726474𝑥3 − 9972325𝑥2 −
726474𝑥 + 5764801

776 117649𝑥4 + 241204𝑥3 + 252294𝑥2 +
241204𝑥 + 117649

780 ?

789 96889010407𝑥2 +
44342429053𝑥 + 96889010407

796 40353607𝑥2 − 37493170𝑥 + 40353607

817 96889010407𝑥10 −
105841746360𝑥9 + 178296252764𝑥8 −
136629231095𝑥7 + 122571582182𝑥6 −
69098758595𝑥5 + 122571582182𝑥4 −
136629231095𝑥3 + 178296252764𝑥2 −

105841746360𝑥 + 96889010407

824 16807𝑥2 − 242𝑥 + 16807

860 678223072849𝑥4 − 2184397520956𝑥3 +
3055123408614𝑥2 − 2184397520956𝑥 +

678223072849

885 1628413597910449𝑥4 + 204791874640430𝑥3 −
641434815054669𝑥2 + 204791874640430𝑥 +

1628413597910449

913 343𝑥2 − 61𝑥 + 343

957 1628413597910449𝑥4 +
2112866467719098𝑥3 +

3938491639741947𝑥2 + 2112866467719098𝑥 +
1628413597910449

969 117649𝑥4 − 303170𝑥3 + 383811𝑥2 −
303170𝑥 + 117649

993 4747561509943𝑥6 − 20012739381222𝑥5 +
39055304380281𝑥4 − 47510509885652𝑥3 +
39055304380281𝑥2 − 20012739381222𝑥 +

4747561509943

888 191581231380566414401𝑥4 −
248030089409444531098𝑥3 +
459995653260746005803𝑥2 −
248030089409444531098𝑥 +

191581231380566414401

𝐷 𝑃𝐷

892 11398895185373143𝑥6 +
38685113123717046𝑥5 +
53214797136063129𝑥4 +
51850173291453364𝑥3 +
53214797136063129𝑥2 +

38685113123717046𝑥 + 11398895185373143

908 16807𝑥2 + 15227𝑥 + 16807

920 117649𝑥4 − 293706𝑥3 + 402739𝑥2 −
293706𝑥 + 117649

⋮ ⋮

1501 16807𝑥2 + 32525𝑥 + 16807

1517 117649𝑥4 − 173340𝑥3 + 268198𝑥2 −
173340𝑥 + 117649

1529 343𝑥2 − 565𝑥 + 343

1545 22539340290692258087863249𝑥4 −
811763499917223738880996𝑥3 −

29366051403531281624524506𝑥2 −
811763499917223738880996𝑥 +
22539340290692258087863249

1581 1628413597910449𝑥4 +
1402857765914330𝑥3 +

2341613101067931𝑥2 + 1402857765914330𝑥 +
1628413597910449

1532 232630513987207𝑥2 + 315805512934414𝑥 +
232630513987207

1560 ?

1564 191581231380566414401𝑥4 +
213828124161526145796𝑥3 +
82618395064789769606𝑥2 +
213828124161526145796𝑥 +

191581231380566414401

1580 79792266297612001𝑥4 +
306806936641045414𝑥3 +
454160449942453851𝑥2 +

306806936641045414𝑥 + 79792266297612001

1592 40353607𝑥2 − 37493170𝑥 + 40353607

⋮ ⋮

Table 8: A selection of minimal polynomials of Gross–Stark
units for 𝑝 = 13

𝐷 𝑃𝐷

21 13𝑥2 − 𝑥 + 13

24 13𝑥2 − 𝑥 + 13

28 13𝑥2 − 10𝑥 + 13

33 13𝑥2 − 𝑥 + 13

44 13𝑥2 − 10𝑥 + 13

57 13𝑥2 − 𝑥 + 13

60 4826809𝑥4 + 17830670𝑥3 + 26104443𝑥2 +
17830670𝑥 + 4826809
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𝐷 𝑃𝐷

76 13𝑥2 − 10𝑥 + 13

93 2197𝑥2 + 506𝑥 + 2197

124 2197𝑥2 − 4070𝑥 + 2197

136 169𝑥4 − 508𝑥3 + 694𝑥2 − 508𝑥 + 169

141 371293𝑥2 − 141961𝑥 + 371293

161 2197𝑥2 + 1082𝑥 + 2197

177 2197𝑥2 + 506𝑥 + 2197

184 2197𝑥2 + 1082𝑥 + 2197

188 371293𝑥2 + 291336𝑥 + 371293

201 13𝑥2 − 𝑥 + 13

213 62748517𝑥2 + 33388991𝑥 + 62748517

236 2197𝑥2 − 4070𝑥 + 2197

249 2197𝑥2 + 506𝑥 + 2197

253 2197𝑥2 + 1082𝑥 + 2197

268 13𝑥2 − 10𝑥 + 13

280 169𝑥4 − 114𝑥3 + 59𝑥2 − 114𝑥 + 169

284 62748517𝑥2 + 46322630𝑥 + 62748517

301 13𝑥2 − 17𝑥 + 13

305 169𝑥4 + 225𝑥3 + 337𝑥2 + 225𝑥 + 169

332 2197𝑥2 − 4070𝑥 + 2197

344 13𝑥2 − 17𝑥 + 13

345 112455406951957393129𝑥4 +
11747418581693703766𝑥3 −
16853755082908573101𝑥2 +
11747418581693703766𝑥 +
112455406951957393129

357 137858491849𝑥4 + 70774656550𝑥3 −
7011955677𝑥2 +

70774656550𝑥 + 137858491849

385 28561𝑥4 − 40014𝑥3 + 30131𝑥2 − 40014𝑥 +
28561

408 4826809𝑥4 − 12923950𝑥3 + 18242043𝑥2 −
12923950𝑥 + 4826809

437 2197𝑥2 + 1082𝑥 + 2197

440 28561𝑥4 − 12636𝑥3 − 24794𝑥2 − 12636𝑥 +
28561

444 ?

453 62748517𝑥2 + 33388991𝑥 + 62748517

460 23298085122481𝑥4 + 31496391619420𝑥3 +
39149169555174𝑥2 + 31496391619420𝑥 +

23298085122481

473 371293𝑥6 + 776048𝑥5 + 35984𝑥4 −
741025𝑥3 + 35984𝑥2 + 776048𝑥 + 371293

𝐷 𝑃𝐷

476 137858491849𝑥4 + 67998405072𝑥3 −
136363825198𝑥2 +

67998405072𝑥 + 137858491849

489 13𝑥2 − 𝑥 + 13

492 665416609183179841𝑥4 −
2349559047469661170𝑥3 +
3370189313691943107𝑥2 −
2349559047469661170𝑥 +

665416609183179841

501 1792160394037𝑥2 + 1471948630151𝑥 +
1792160394037

505 815730721𝑥8 − 5053583340𝑥7 +
14879614126𝑥6 − 26903413385𝑥5 +
32533743881𝑥4 − 26903413385𝑥3 +

14879614126𝑥2 − 5053583340𝑥 + 815730721

552 112455406951957393129𝑥4 −
304529235540829089934𝑥3 +
429644727055390799499𝑥2 −
304529235540829089934𝑥 +

112455406951957393129

553 371293𝑥2 + 731210𝑥 + 371293

561 4826809𝑥4 + 498550𝑥3 − 922557𝑥2 +
498550𝑥 + 4826809

604 62748517𝑥2 + 46322630𝑥 + 62748517

609 112455406951957393129𝑥4 +
347141196630288638734𝑥3 +
491744899221812341899𝑥2 +
347141196630288638734𝑥 +

112455406951957393129

616 28561𝑥4 + 72540𝑥3 + 93734𝑥2 + 72540𝑥 +
28561

632 371293𝑥2 + 731210𝑥 + 371293

645 3937376385699289𝑥4 +
3534126734050406𝑥3 +

4443673329407859𝑥2 + 3534126734050406𝑥 +
3937376385699289

652 13𝑥2 − 10𝑥 + 13

665 815730721𝑥4 − 2196600146𝑥3 +
2880091491𝑥2 − 2196600146𝑥 + 815730721

668 1792160394037𝑥2 − 1295098551624𝑥 +
1792160394037

669 62748517𝑥2 + 33388991𝑥 + 62748517

681 371293𝑥2 − 141961𝑥 + 371293

696 112455406951957393129𝑥4 −
13391203430841994966𝑥3 +
45246417083512969299𝑥2 −
13391203430841994966𝑥 +
112455406951957393129

713 10604499373𝑥2 +
14401098646𝑥 + 10604499373
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𝐷 𝑃𝐷

717 51185893014090757𝑥2 +
55850658624240986𝑥 + 51185893014090757

721 371293𝑥2 + 740938𝑥 + 371293

748 815730721𝑥4 − 394449380𝑥3 − 826434426𝑥2 −
394449380𝑥 + 815730721

749 2197𝑥2 + 4273𝑥 + 2197

760 815730721𝑥4 − 693663204𝑥3 +
1311378566𝑥2 − 693663204𝑥 + 815730721

812 23298085122481𝑥4 − 10754121312480𝑥3 +
2851310014562𝑥2 − 10754121312480𝑥 +

23298085122481

813 1792160394037𝑥2 + 1471948630151𝑥 +
1792160394037

817 302875106592253𝑥10 − 1226780694234784𝑥9 +
2524596373632892𝑥8 −
3241424962208251𝑥7 +
3094472579467074𝑥6 −
2822219265781367𝑥5 +
3094472579467074𝑥4 −
3241424962208251𝑥3 +

2524596373632892𝑥2 − 1226780694234784𝑥 +
302875106592253

824 371293𝑥2 + 740938𝑥 + 371293

840 ?

856 2197𝑥2 + 4273𝑥 + 2197

860 3937376385699289𝑥4 +
2121981902601288𝑥3 +

6059964960211127𝑥2 + 2121981902601288𝑥 +
3937376385699289

869 371293𝑥2 + 731210𝑥 + 371293

876 ?

889 371293𝑥2 − 738742𝑥 + 371293

892 1461920290375446110677𝑥6 −
3171414591452020554290𝑥5 +
2704915147614772002235𝑥4 −
1924719470449418361980𝑥3 +
2704915147614772002235𝑥2 −
3171414591452020554290𝑥 +

1461920290375446110677

905 815730721𝑥8 − 1243745867𝑥7 +
2124262231𝑥6 − 2631720992𝑥5 +
3118357939𝑥4 − 2631720992𝑥3 +

2124262231𝑥2 − 1243745867𝑥 + 815730721

908 371293𝑥2 + 291336𝑥 + 371293

917 371293𝑥2 + 116905𝑥 + 371293

921 2197𝑥2 + 506𝑥 + 2197

956 51185893014090757𝑥2 +
36189236900246650𝑥 + 51185893014090757

𝐷 𝑃𝐷

957 112455406951957393129𝑥4 −
66560296566848515366𝑥3 +
61020360939834420099𝑥2 −
66560296566848515366𝑥 +
112455406951957393129

969 4826809𝑥4 − 12923950𝑥3 + 18242043𝑥2 −
12923950𝑥 + 4826809

973 2197𝑥2 − 4255𝑥 + 2197

993 51185893014090757𝑥6 +
14775792045508299𝑥5 +
81257077474802502𝑥4 −
8612135558133689𝑥3 +
81257077474802502𝑥2 +

14775792045508299𝑥 + 51185893014090757

1016 10604499373𝑥6 −
50373516674𝑥5 + 110013382115𝑥4 −
140427138524𝑥3 + 110013382115𝑥2 −

50373516674𝑥 + 10604499373

1020 ?

1032 137858491849𝑥4 − 88912161754𝑥3 +
136705168419𝑥2 −

88912161754𝑥 + 137858491849

1045 815730721𝑥8 − 1557009506𝑥7 +
908583377𝑥6 + 1537560830𝑥5 −
2782729244𝑥4 + 1537560830𝑥3 +

908583377𝑥2 − 1557009506𝑥 + 815730721

1048 371293𝑥2 + 116905𝑥 + 371293

1064 4826809𝑥4 + 17401540𝑥3 + 25232406𝑥2 +
17401540𝑥 + 4826809

1068 ?

1077 1461920290375446110677𝑥2 +
2861211170816759241913𝑥 +

1461920290375446110677

1081 51185893014090757𝑥2 +
96954465195037082𝑥 + 51185893014090757

1084 1792160394037𝑥2 − 1295098551624𝑥 +
1792160394037

1085 4826809𝑥4 + 5697796𝑥3 + 2260374𝑥2 +
5697796𝑥 + 4826809

1112 2197𝑥2 − 4255𝑥 + 2197

1113 ?

1133 371293𝑥2 + 740938𝑥 + 371293

1137 2197𝑥2 + 506𝑥 + 2197

1149 8650415919381337933𝑥2 −
10525338489559169641𝑥 +

8650415919381337933

1164 ?

1177 2197𝑥2 + 4273𝑥 + 2197

1185 ?
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𝐷 𝑃𝐷

1228 2197𝑥2 − 4070𝑥 + 2197

1240 4826809𝑥4 + 5804604𝑥3 + 2551574𝑥2 +
5804604𝑥 + 4826809

1253 371293𝑥2 − 612265𝑥 + 371293

1272 ?

1276 23298085122481𝑥4 − 5941933482576𝑥3 −
29790623147614𝑥2 − 5941933482576𝑥 +

23298085122481

1281 ?

1292 ?

1293 247064529073450392704413𝑥2 −
357172201574584820855926𝑥 +

247064529073450392704413

⋮ ⋮

Table 9: A selection of minimal polynomials of Gross–Stark
units for 𝑝 = 19

𝐷 𝑃𝐷

12 𝑥2 − 𝑥 + 1

21 19𝑥2 + 37𝑥 + 19

33 19𝑥2 + 37𝑥 + 19

56 19𝑥2 + 34𝑥 + 19

60 47045881𝑥4 + 11517572𝑥3 + 80331798𝑥2 +
11517572𝑥 + 47045881

69 6859𝑥2 + 10582𝑥 + 6859

88 19𝑥2 + 34𝑥 + 19

105 47045881𝑥4 − 52329838𝑥3 + 95336763𝑥2 −
52329838𝑥 + 47045881

124 6859𝑥2 − 10618𝑥 + 6859

129 19𝑥2 + 37𝑥 + 19

136 361𝑥4 + 508𝑥3 + 310𝑥2 + 508𝑥 + 361

141 2476099𝑥2 + 2024677𝑥 + 2476099

165 47045881𝑥4 + 11517572𝑥3 + 80331798𝑥2 +
11517572𝑥 + 47045881

184 6859𝑥2 − 2482𝑥 + 6859

204 16983563041𝑥4 + 58364312708𝑥3 +
83835241158𝑥2 + 58364312708𝑥 + 16983563041

205 361𝑥4 + 1234𝑥3 + 1771𝑥2 + 1234𝑥 + 361

217 6859𝑥2 − 10618𝑥 + 6859

221 361𝑥4 − 751𝑥3 + 1104𝑥2 − 751𝑥 + 361

236 6859𝑥2 − 443𝑥 + 6859

249 6859𝑥2 + 10582𝑥 + 6859

268 19𝑥2 − 29𝑥 + 19

280 361𝑥4 + 68𝑥3 + 438𝑥2 + 68𝑥 + 361

284 893871739𝑥2 + 1681323622𝑥 + 893871739

𝐷 𝑃𝐷

312 2213314919066161𝑥4 + 7750717393892942𝑥3 +
11074850562225603𝑥2 + 7750717393892942𝑥 +

2213314919066161

316 322687697779𝑥6 + 329983416446𝑥5 +
166529437693𝑥4 − 2130331612𝑥3 +

166529437693𝑥2 +
329983416446𝑥 + 322687697779

341 6859𝑥2 − 10618𝑥 + 6859

344 19𝑥2 + 34𝑥 + 19

345 104127350297911241532841𝑥4 +
269313316354909668842066𝑥3 +
370298516319289803354411𝑥2 +
269313316354909668842066𝑥 +

104127350297911241532841

357 6131066257801𝑥4 − 21130670891902𝑥3 +
30404785917003𝑥2 − 21130670891902𝑥 +

6131066257801

364 130321𝑥4 + 274550𝑥3 + 299067𝑥2 + 274550𝑥 +
130321

376 2476099𝑥2 + 3353726𝑥 + 2476099

393 2476099𝑥2 + 2024677𝑥 + 2476099

412 2476099𝑥2 + 3880586𝑥 + 2476099

413 6859𝑥2 − 443𝑥 + 6859

417 6859𝑥2 + 10582𝑥 + 6859

428 6859𝑥2 − 5051𝑥 + 6859

440 130321𝑥4 + 16492𝑥3 − 70842𝑥2 + 16492𝑥 +
130321

469 2476099𝑥6 − 11834663𝑥5 + 25354930𝑥4 −
31990523𝑥3 + 25354930𝑥2 − 11834663𝑥 +

2476099

489 19𝑥2 + 37𝑥 + 19

497 893871739𝑥2 + 1681323622𝑥 + 893871739

508 2476099𝑥2 − 3241334𝑥 + 2476099

545 361𝑥4 + 661𝑥3 + 681𝑥2 + 661𝑥 + 361

553 2476099𝑥2 − 806902𝑥 + 2476099

561 47045881𝑥4 − 111524452𝑥3 + 135187158𝑥2 −
111524452𝑥 + 47045881

572 6131066257801𝑥4 − 19556071678588𝑥3 +
27787600238838𝑥2 − 19556071678588𝑥 +

6131066257801

573 42052983462257059𝑥2 −
83128476573258443𝑥 + 42052983462257059

584 361𝑥4 + 1143𝑥3 + 1600𝑥2 + 1143𝑥 + 361

597 322687697779𝑥2 −
308559680858𝑥 + 322687697779

604 893871739𝑥2 + 1787627878𝑥 + 893871739

⋮ ⋮
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